K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

A C D B O I K E F M

a) Ta có: CD là tiếp tuyến của (O) tại M (gt)

=> CM \(\perp\)MO => \(\widehat{CMO}=90^o\)

AC là tiếp tuyến của (O) tại A (gt)

=> \(AC\perp AO\Rightarrow\widehat{CAO}=90^o\)

Xét tứ giác OACM có: \(\widehat{CMO}+\widehat{CAO}=90^o+90^o=180^o\)

=> OACM nội tiếp (1)

Chứng minh Tương tự : OBDM nội tiếp (2)

b) M thuộc (O), AB là đường kính

=> \(\widehat{EMF}=\widehat{AMB}=90^o\)( góc chắn nửa đường tròn) (3)

Ta có: \(CO\perp AM\)( tự chứng minh bài toán quen thuộc )

=> \(\widehat{OEM}=90^o\)(4)

Tương tự \(\widehat{OFM}=90^o\)(5)

Từ 3, 4, 5 => Tứ giác OEFM là hình chữ nhật (tứ giác có 3 góc vuông ) (6)

c) Ta có:  \(\widehat{IOK}=\widehat{EOF}=90^o\)( theo 6)

Mặt khác: I là trung điểm OC, tam giác CMO vuông tại M 

=> CM=IC=IO=> tam giác CIM cân => \(\widehat{IMC}=\widehat{MCI}\)

mà \(\widehat{MCI}=\widehat{MCO}=\widehat{MAO}\)( từ 1)

=> \(\widehat{IMC}=\widehat{MAO}\), chứng minh tương tự  \(\widehat{KMD}=\widehat{MBO}\)

=> \(\widehat{IMC}+\widehat{KMD}=\widehat{MAO}+\widehat{MBO}=90^o\)Vì tam giác AMB vuông tại M

=> \(\widehat{IMK}=90^o\)

Xét tứ giác OIMK có: \(\widehat{IMK}+\widehat{IOK}=180^o\)

=> OIMK nội tiếp

d) IK là đường trung bình của tam giác COD =>IK=1/2CD và OH=1/2 OM (Với H là giao điểm OM và IK=> OH vuông IF)

=>  \(S_{\Delta IOK}=\frac{1}{4}S_{\Delta OCD}\)

Tam giác IKM= tam giác IKO (c.c.c)

=> \(S_{\Delta IOK}=S_{\Delta IMK}\)

=> \(S_{IMKO}=S_{\Delta IOK}+S_{\Delta IMK}=\frac{1}{2}S_{\Delta COD}\)

Ta lại có: tam giác COM= tam giác  COA , tam giác MOD=tam giác BOD

=> \(S_{COD}=S_{\Delta COM}+S_{\Delta MOD}=\frac{1}{2}S_{CAMO}+\frac{1}{2}S_{MDBO}=\frac{1}{2}S_{ACDB}\)

=> \(S_{IMKO}=\frac{1}{4}S_{ACDB}=\frac{1}{4}.\frac{1}{2}\left(AC+DB\right).AB\)=10 (cm)vì ACDB là hình thang vuông với đáy AC, DB và đường cao AB

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

15 tháng 12 2022

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là các tiếp tuyến

nen DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của MB

=>OD vuông góc với MB

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

b: Xét tứ giác OIMK co

góc OIM=góc OKM=góc KOI=90 độ

nên OIMK là hình chữ nhật

14 tháng 12 2017

a) vì \(AC\)VÀ \(CM\)LÀ 2 TIẾP TUYẾN CẮT NHAU TẠI \(C\)CỦA ĐƯỜNG TRÒN \(\left(O\right)\)NÊN TA CÓ

  -   \(CO\)LÀ TIA PHÂN GIÁC \(\widehat{ACM}\)               ( TÍCH CHẤT 

  -  \(OC\)LÀ TIA PHÂN GIÁC \(\widehat{AOM}\)             2 TIẾP TUYẾN 

  -  \(AC=CM\)                                                           CẮT NHAU )

\(\Rightarrow\widehat{AOC}=\widehat{MOC}\)

C/M TƯƠNG TỰ TA CÓ  \(\widehat{MOD}=\widehat{BOD}\)

+ TA CÓ: \(\widehat{AOC}+\widehat{MOC}+\widehat{MOD}+\widehat{BOD}=180^0\)

\(\Leftrightarrow2\widehat{COM}+2\widehat{MOD}=180^0\)

\(\Leftrightarrow2.\left(\widehat{COM}+\widehat{MOD}\right)=180^0\)

\(\Leftrightarrow\widehat{COM}+\widehat{MOD}=90^0\)

HAY \(\widehat{COD}=90^0\)

VẬY \(\widehat{COD}=90^0\)

B) XÉT \(\Delta AOM\)CÓ : \(AO=OM\)( BÁN KÍNH ĐƯỜNG TRÒN TÂM O )

\(\Rightarrow\Delta AOM\)LÀ \(\Delta\)CÂN TẠI O

MÀ \(\widehat{AOI}=\widehat{MOI}\)( TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU )

\(\Rightarrow OI\)LÀ TIA PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG CAO TRONG \(\Delta\) CÂN \(AOM\)

\(\Rightarrow OI\perp AM\)TẠI  \(I\)

\(\Rightarrow\widehat{MIO}=90^0\)

C/M TƯƠNG TỰ TA CÓ: \(MK\perp OK\)

\(\Rightarrow\widehat{OKM}=90^0\)

THEO CÂU A) TA CÓ: \(\widehat{COD}=90^0\)

XÉT TỨ GIÁC \(OIMK\) CÓ 3 GÓC VUÔNG \(\Rightarrow\)TỨ GIÁC \(OIMK\)LÀ HÌNH CHỮ NHẬT

VẬY T/G \(OIMK\)LÀ HCN

C) TA CÓ: \(AC=CM\)( TÍNH CHẤT 2 TIẾP TUYẾN ....)

TƯƠNG TỰ \(MD=BD\)

KHI ĐÓ: \(AC.BD\) 

\(=CM.MD\)

\(OM\perp CM\)\(CM\)LÀ TIẾP TUYẾN TẠI M )

ÁP DỤNG HỆ THỨC GIỮA CẠNH VÀ ĐƯỜNG CAO VÀO \(\Delta COD\)VUÔGN TẠI \(O\), ĐƯỜNG CAO \(OM\)TA CÓ 

\(CM.MD=MO^2\)

\(\Rightarrow CM.MD=R^2\)  ( VÌ \(MO\)LÀ BÁN KÍNH)

HAY \(AC.BD=R^2\)  MÀ \(R\)KHÔNG ĐỔI

\(\Rightarrow AC.BD\)KO ĐỔI KHI \(C\)DI CHUYỂN TRÊN \(Ax\)

D) VẼ \(I\)LÀ TRUNG ĐIỂM CỦA \(CD\), NỐI \(O\)VỚI \(I\)

\(AC\perp AB\) ( AC LÀ TIẾP TUYẾN TẠI A )

\(BD\perp AB\)( BD LÀ TIẾP TUYẾN TẠI B)

\(\Rightarrow AC\)SONG SONG \(BD\)( CÙNG VUÔNG GOC VỚI AB  )

\(\Rightarrow\)T/G \(ACDB\)LÀ HÌNH THANG

XÉT HÌNH THANG \(ACDB\)

CÓ \(CI=DI\)

\(AO=OB\)

\(\Rightarrow OI\)SONG SONG \(AC\)

MÀ \(AC\perp AB\)

\(\Rightarrow OI\perp AB\)  ( 1 ) 

\(MC=MD=\frac{1}{2}CD\)

XÉT \(\Delta\)VUÔNG \(COD\)CÓ   \(OI\)LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN \(CD\)

VÀ \(OI=\frac{1}{2}CD\)

\(\Rightarrow OM=MC=MD\)

\(\Rightarrow M\)CÁCH ĐỀU 3 ĐIỂM \(O,C,D\)

\(\Rightarrow M\in\left(I;\frac{CD}{2}\right)\)  ( 2 ) 

TỪ ( 1 ) VÀ ( 2 ) TA CÓ: \(AB\)LÀ TIẾP TUYẾN CỦA ĐƯỜNG TRÒN ĐƯỜNG KÍNH CD

10 tháng 4 2020

a) Ta có Co là phân giác của góc AOM,OD ,là phân giác cảu góc BOM =>COM+DOM=1/2(AOM+BOM)=1/2*180=90

b) ta có M thuộc (O mà AB là đường kính => AMB là tam giác vuông=> góc AMB vuông;DM=DB,OM=OB=> Od là đường trung trực của MB => OD vuông góc Mb => góc MKO =90

c) Vì OM vuông góc với CD, áp dụng hệ thức lượng cho tam giác COD(call of duty)=> CM*MD=MO^2

mà CA=CM,MD=DB(TÍNH CHẤT 2 TIẾP TUYẾN CẮT NHAU) =>CA*BD=OM^2 mà OM=AB/2 =>AC*BD=(AB^2)/4vì AB cố địnhnên h AC,BD không đổi

d)P là điểm nào

Bài làm

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi

                                                                        ~Học tốt!!~

1 tháng 6 2016

Sorry nha!!!! Mình không biết

vì mình mới học lớp 4 thôi