K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB....
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

7 tháng 11 2016

???ng tr�n c: ???ng tr�n qua B v?i t�m O ?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [C, D] ?o?n th?ng h: ?o?n th?ng [C, A] ?o?n th?ng i: ?o?n th?ng [C, H] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [H, D] ?o?n th?ng l: ?o?n th?ng [C, B] ?o?n th?ng n: ?o?n th?ng [H, E] ?o?n th?ng p: ?o?n th?ng [E, K] ?o?n th?ng q: ?o?n th?ng [E, I] A = (-7.03, -1.84) A = (-7.03, -1.84) A = (-7.03, -1.84) B = (8.14, -2.02) B = (8.14, -2.02) B = (8.14, -2.02) ?i?m O: Trung ?i?m c?a f ?i?m O: Trung ?i?m c?a f ?i?m O: Trung ?i?m c?a f ?i?m I: ?i?m tr�n f ?i?m I: ?i?m tr�n f ?i?m I: ?i?m tr�n f ?i?m C: Giao ?i?m c?a c, C_1 ?i?m C: Giao ?i?m c?a c, C_1 ?i?m C: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m H: A ??i x?ng qua I ?i?m H: A ??i x?ng qua I ?i?m H: A ??i x?ng qua I ?i?m E: Giao ?i?m c?a m, l ?i?m E: Giao ?i?m c?a m, l ?i?m E: Giao ?i?m c?a m, l ?i?m K: Trung ?i?m c?a H, B ?i?m K: Trung ?i?m c?a H, B ?i?m K: Trung ?i?m c?a H, B

a. Tứ giác ACHD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành. Lại có \(CD\perp AH\) nên đây là hình thoi.

b. Ta thấy \(AC\perp CB;HE\perp CB\) mà DH // AC nên \(DH\perp BC\) hay D, H ,E thẳng hàng. Vậy các hình thang trong hình vẽ trên là: ACDE; ACHD; EHAC.

c. Do tam giác EDC vuông tại E nên IE =ID =IC hay \(\widehat{IEH}=\widehat{IDE}\) . Mà \(\widehat{IDE}=\widehat{CBH}\)(Cùng phụ với \(\widehat{ICB}\) ) nên \(\widehat{IEH}=\widehat{CBH}\)

Lại có tam giác EHB cũng vuông tại E nên KB = KE hay \(\widehat{CBH}=\widehat{BEK}\)

Vậy thì \(\widehat{IEH}=\widehat{BEK}\). Từ đó suy ra \(\widehat{IEK}=\widehat{IEH}+\widehat{HEK}=\widehat{BEK}+\widehat{HEK}=\widehat{HEB}=90^o\)

Vậy \(IE\perp EK\left(đpcm\right)\)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

2 tháng 4 2016

a)   Xet tam giac COA can tai O(  OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30         (1)

Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30   (2)

Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH      (3)

Lai co: tam giac CAO deu nen CA= CO         (4)

Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C

➡CO vuong goc voi HC tai C

Vay HC la tiep tuyen

b).       Tu giac ACOD la hinh thoi

Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau

c).        

16 tháng 8 2021

O A B C D H M

a, xét tam giác CHA và tg CHO có : CH chung

AH = HO do H là trđ của AO (gt)

^CHA = ^CHO = 90

=> tg CHA = tg CHO (2cgv)

=> CH = CO

có AB _|_ CD => A là điểm chính giữa của cung CD => AC = AD mà OC  = OD 

=> AC = CO = OD = DA

=> ACOD là hình thoi

b, C thuộc đường tròn đường kính AB => ^ACB = 90 => AC _|_ CB

có AC // DO do ACOD là hình thoi 

=> DO _|_ CB  

M là trung điểm của dây BC (Gt) => OM _|_ BC (định lí)

=> D;O;M thẳng hàng

c, xét tg ACB có ^ACB = 90 và CH _|_ AB

=> AH.HB = CH^2

=> 4AH.HB = 4CH^2

=> 4AH.HB = (2CH)^2

mà 2CH = CD

=> CD^2 = 4AH.HB

26 tháng 3 2019

sao ko thấy điểm C đâu thế ạ???