Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
???ng tr�n c: ???ng tr�n qua B v?i t�m O ?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [C, D] ?o?n th?ng h: ?o?n th?ng [C, A] ?o?n th?ng i: ?o?n th?ng [C, H] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [H, D] ?o?n th?ng l: ?o?n th?ng [C, B] ?o?n th?ng n: ?o?n th?ng [H, E] ?o?n th?ng p: ?o?n th?ng [E, K] ?o?n th?ng q: ?o?n th?ng [E, I] A = (-7.03, -1.84) A = (-7.03, -1.84) A = (-7.03, -1.84) B = (8.14, -2.02) B = (8.14, -2.02) B = (8.14, -2.02) ?i?m O: Trung ?i?m c?a f ?i?m O: Trung ?i?m c?a f ?i?m O: Trung ?i?m c?a f ?i?m I: ?i?m tr�n f ?i?m I: ?i?m tr�n f ?i?m I: ?i?m tr�n f ?i?m C: Giao ?i?m c?a c, C_1 ?i?m C: Giao ?i?m c?a c, C_1 ?i?m C: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m D: Giao ?i?m c?a c, C_1 ?i?m H: A ??i x?ng qua I ?i?m H: A ??i x?ng qua I ?i?m H: A ??i x?ng qua I ?i?m E: Giao ?i?m c?a m, l ?i?m E: Giao ?i?m c?a m, l ?i?m E: Giao ?i?m c?a m, l ?i?m K: Trung ?i?m c?a H, B ?i?m K: Trung ?i?m c?a H, B ?i?m K: Trung ?i?m c?a H, B
a. Tứ giác ACHD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành. Lại có \(CD\perp AH\) nên đây là hình thoi.
b. Ta thấy \(AC\perp CB;HE\perp CB\) mà DH // AC nên \(DH\perp BC\) hay D, H ,E thẳng hàng. Vậy các hình thang trong hình vẽ trên là: ACDE; ACHD; EHAC.
c. Do tam giác EDC vuông tại E nên IE =ID =IC hay \(\widehat{IEH}=\widehat{IDE}\) . Mà \(\widehat{IDE}=\widehat{CBH}\)(Cùng phụ với \(\widehat{ICB}\) ) nên \(\widehat{IEH}=\widehat{CBH}\)
Lại có tam giác EHB cũng vuông tại E nên KB = KE hay \(\widehat{CBH}=\widehat{BEK}\)
Vậy thì \(\widehat{IEH}=\widehat{BEK}\). Từ đó suy ra \(\widehat{IEK}=\widehat{IEH}+\widehat{HEK}=\widehat{BEK}+\widehat{HEK}=\widehat{HEB}=90^o\)
Vậy \(IE\perp EK\left(đpcm\right)\)
a) Xet tam giac COA can tai O( OA= OC) co CI vua la duong cao vua la trung tuyen ung voi AO nen tam giac OAC deu. Suy ra goc COA bang 60do , suy ra so do cung CA bang 60do. Suy ra goc COB bang 180-60=120 suy ra so do cung CA bang 120. Co: HCA=1/2sd cungCA=60/2=30 (1)
Co goc CHB=1/2(sd cungCB- sd cungCA) =1/2(120-60)=1/2*60=30 (2)
Tu (1); (2) suy ra: tam giac ACH can tai A. Suy ra AC= AH (3)
Lai co: tam giac CAO deu nen CA= CO (4)
Tu (3);(4)suy ra CA=CO=AH⏩ tam giac CHO vuong tai C
➡CO vuong goc voi HC tai C
Vay HC la tiep tuyen
b). Tu giac ACOD la hinh thoi
Tu giac co 4 canh ( CA= CO=OD=DA) bang nhau
c).
O A B C D H M
a, xét tam giác CHA và tg CHO có : CH chung
AH = HO do H là trđ của AO (gt)
^CHA = ^CHO = 90
=> tg CHA = tg CHO (2cgv)
=> CH = CO
có AB _|_ CD => A là điểm chính giữa của cung CD => AC = AD mà OC = OD
=> AC = CO = OD = DA
=> ACOD là hình thoi
b, C thuộc đường tròn đường kính AB => ^ACB = 90 => AC _|_ CB
có AC // DO do ACOD là hình thoi
=> DO _|_ CB
M là trung điểm của dây BC (Gt) => OM _|_ BC (định lí)
=> D;O;M thẳng hàng
c, xét tg ACB có ^ACB = 90 và CH _|_ AB
=> AH.HB = CH^2
=> 4AH.HB = 4CH^2
=> 4AH.HB = (2CH)^2
mà 2CH = CD
=> CD^2 = 4AH.HB