Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O cách đều 3 cạnh nên O là giao của 3 đường phân giác của Δ ABC
Xét Δ ABO và Δ MBO có: Cạnh BO chung, B1=B2,AB=BM⇒ Δ ABO = Δ MBO (c.g.c) ⇒ OA = OM (1)
Tương tự có Δ ACO = Δ NCO (c.g.c) ⇒ AO = ON (2).
Từ (1) và (2) ⇒ ON = OM hay Δ MON cân tại O.
Mà OD⊥ BC ⇒ OD vừa là đường cao vừa là đường phân giác ⇒ NOD=MOD.
Ta có: FOM^ =FOD+ MOD =1800−ABC+MOD
EON=3600−NOD−EOD= 3600−NOD^−(1800−ACB) = 1800+ACB−NOD
Ta chứng minh FOM=EON.
Thật vậy FOM=EON
⇔1800−ABC+MOD = 1800+ACB−NOD
⇔1800−(ABC+ACB)=1800−(NOD+MOD)
⇔BAC=ONM+OMN.
⇔A1+A2=ONM+OMN
Luôn đúng vì {A1=OMN(ΔABO=ΔMBO);A2=ONM(ΔAOC=ΔNOC)
Vậy ΔFOM=ΔEON (c.g.c)
⇒ FM = EN
Chúc các em học tốt, thân!
A B C M E A K I O N D J
a) Do O là trọng tâm giác tam giác ABC nên \(OE=\frac{1}{2}OC\)
Lại có \(OE=\frac{1}{2}OK\) (Do EK = EO)
Vậy nên OC = OK.
Tương tự OI = OB. Vậy tứ giác BKIC là hình bình hành.
Lại có do tam giác ABC cân tại A nên AO là đường trung trực của BC. Vậy thì OB = OC hay ta suy ra BI = CK
Hình bình hành BKIC có hai đường chéo bằng nhau nên nó là hình chữ nhật.
b) Xét tứ giác BKAO có EK = EO, EA = EB nên BKAO là hình bình hành.
Do BKIC là hình chữ nhật nên OB = OI
Vậy nên AK song song và bằng OI hay AIOK là hình bình hành.
Ta cũng có OK = OI nên AIOK là hình thoi.
c) Gọi J là trung điểm của NC.
Xét tam giác BNC có M là trung điểm BC, J là trung điểm NC nên MJ là đường trung bình hay MJ // BN.
Xét tam giác MNC có MD = ND; NJ = JC nên DJ là đường trung bình hay DJ // MC.
Do \(MC\perp OM\Rightarrow JD\perp OM\)
Xét tam giác OMJ có \(JD\perp OM;MN\perp OJ\) nên D là trực tâm tam giác.
Suy ra \(OD\perp MJ\)
Mà MJ // NB nên \(NB\perp OD.\)