K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
11 tháng 3 2020
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.
SV
15 tháng 3 2015
d) Tứ giác HMIK nội tiếp => góc HKN = góc HMI (góc ngoài = góc đối trong) => tg vuông HKN và tg vuông HMC => HK/HM = HN/HC => HK.HC = HM.HN (1)
Ta lại có góc MBN nội tiếp chắn nửa (O) nên = 900 => HB2 = HM.HN (hệ thức tg vuông) (2)
Từ (1) và (2) => HB2 = HK.HC => HK = HB2/HC = không đổi ( Vì A, B, C cố định) => K cố định
Vậy IN luôn đi qua điểm K cố định