K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Ai giúp em với ạ 

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
9 tháng 5 2017

Đường tròn c: Đường tròn qua B với tâm O Đường tròn d: Đường tròn qua N với tâm I Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [K, M] Đoạn thẳng l: Đoạn thẳng [O, M] Đoạn thẳng n: Đoạn thẳng [N, I] Đoạn thẳng p: Đoạn thẳng [K, O] Đoạn thẳng q: Đoạn thẳng [A, M] Đoạn thẳng r: Đoạn thẳng [B, M] Đoạn thẳng s: Đoạn thẳng [E, F] Đoạn thẳng t: Đoạn thẳng [K, B] Đoạn thẳng b: Đoạn thẳng [E, P] Đoạn thẳng e: Đoạn thẳng [K, A] Đoạn thẳng g_1: Đoạn thẳng [Q, F] Đoạn thẳng h_1: Đoạn thẳng [Q, P] O = (-104.14, 3867.65) O = (-104.14, 3867.65) O = (-104.14, 3867.65) B = (179.14, 3864.38) B = (179.14, 3864.38) B = (179.14, 3864.38) Điểm A: Giao điểm của c, f Điểm A: Giao điểm của c, f Điểm A: Giao điểm của c, f Điểm K: Giao điểm của c, h Điểm K: Giao điểm của c, h Điểm K: Giao điểm của c, h Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm E: Giao điểm của d, q Điểm E: Giao điểm của d, q Điểm E: Giao điểm của d, q Điểm F: Giao điểm của d, r Điểm F: Giao điểm của d, r Điểm F: Giao điểm của d, r Điểm P: Giao điểm của a, t Điểm P: Giao điểm của a, t Điểm P: Giao điểm của a, t Điểm Q: Giao điểm của f_1, e Điểm Q: Giao điểm của f_1, e Điểm Q: Giao điểm của f_1, e X

a. Từ N kẻ đường thẳng vuông góc với AB, cắt OM tại I. Vậy (I; IN) chính là tâm đường tròn cần tìm. 

Ta chỉ cần chứng minh M thuộc (I). Thật vậy, IN // KO (Cùng vuông góc AB) nên \(\widehat{OKM}=\widehat{INM}\) mà \(\widehat{OKM}=\widehat{OMK}\)

Vậy nên \(\widehat{IMN}=\widehat{INM}\Rightarrow IN=IM\). Vậy M thuộc đường tròn (I).

b. Kẻ tiếp tuyến Mx của hai đường tròn. Khi đó \(\widehat{FEM}=\widehat{FMx}=\widehat{BMx}=\widehat{BAM}\)

Chúng lại ở vị trí so le trong nên EF // AB.

c. Ta thấy ngay \(\Delta OKN\sim\Delta KMJ\left(g-g\right)\Rightarrow\frac{KN}{MJ}=\frac{OK}{KM}\Rightarrow KM.KN=MJ.OK=2R^2.\)

d. Coi AK = 1, đặt \(\frac{NB}{AB}=t\Rightarrow\frac{AN}{AB}=1-t;NP=t;NQ=1-t;PQ=\sqrt{t^2+\left(1-t\right)^2}\)

Ta tìm min \(1+\sqrt{2t^2-2t+1}=1+\sqrt{2\left(t-\frac{1}{2}\right)^2+\frac{1}{2}}\ge1+\frac{1}{\sqrt{2}}\)

Dấu bằng xảy ra khi \(t=\frac{1}{2}\) hay N trùng O.

9 tháng 5 2017

tks bạn nha !

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0