Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B với tâm O Đường tròn d: Đường tròn qua N với tâm I Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [K, M] Đoạn thẳng l: Đoạn thẳng [O, M] Đoạn thẳng n: Đoạn thẳng [N, I] Đoạn thẳng p: Đoạn thẳng [K, O] Đoạn thẳng q: Đoạn thẳng [A, M] Đoạn thẳng r: Đoạn thẳng [B, M] Đoạn thẳng s: Đoạn thẳng [E, F] Đoạn thẳng t: Đoạn thẳng [K, B] Đoạn thẳng b: Đoạn thẳng [E, P] Đoạn thẳng e: Đoạn thẳng [K, A] Đoạn thẳng g_1: Đoạn thẳng [Q, F] Đoạn thẳng h_1: Đoạn thẳng [Q, P] O = (-104.14, 3867.65) O = (-104.14, 3867.65) O = (-104.14, 3867.65) B = (179.14, 3864.38) B = (179.14, 3864.38) B = (179.14, 3864.38) Điểm A: Giao điểm của c, f Điểm A: Giao điểm của c, f Điểm A: Giao điểm của c, f Điểm K: Giao điểm của c, h Điểm K: Giao điểm của c, h Điểm K: Giao điểm của c, h Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm E: Giao điểm của d, q Điểm E: Giao điểm của d, q Điểm E: Giao điểm của d, q Điểm F: Giao điểm của d, r Điểm F: Giao điểm của d, r Điểm F: Giao điểm của d, r Điểm P: Giao điểm của a, t Điểm P: Giao điểm của a, t Điểm P: Giao điểm của a, t Điểm Q: Giao điểm của f_1, e Điểm Q: Giao điểm của f_1, e Điểm Q: Giao điểm của f_1, e X
a. Từ N kẻ đường thẳng vuông góc với AB, cắt OM tại I. Vậy (I; IN) chính là tâm đường tròn cần tìm.
Ta chỉ cần chứng minh M thuộc (I). Thật vậy, IN // KO (Cùng vuông góc AB) nên \(\widehat{OKM}=\widehat{INM}\) mà \(\widehat{OKM}=\widehat{OMK}\)
Vậy nên \(\widehat{IMN}=\widehat{INM}\Rightarrow IN=IM\). Vậy M thuộc đường tròn (I).
b. Kẻ tiếp tuyến Mx của hai đường tròn. Khi đó \(\widehat{FEM}=\widehat{FMx}=\widehat{BMx}=\widehat{BAM}\)
Chúng lại ở vị trí so le trong nên EF // AB.
c. Ta thấy ngay \(\Delta OKN\sim\Delta KMJ\left(g-g\right)\Rightarrow\frac{KN}{MJ}=\frac{OK}{KM}\Rightarrow KM.KN=MJ.OK=2R^2.\)
d. Coi AK = 1, đặt \(\frac{NB}{AB}=t\Rightarrow\frac{AN}{AB}=1-t;NP=t;NQ=1-t;PQ=\sqrt{t^2+\left(1-t\right)^2}\)
Ta tìm min \(1+\sqrt{2t^2-2t+1}=1+\sqrt{2\left(t-\frac{1}{2}\right)^2+\frac{1}{2}}\ge1+\frac{1}{\sqrt{2}}\)
Dấu bằng xảy ra khi \(t=\frac{1}{2}\) hay N trùng O.