K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

ΔAOI vuông tại O

=>AO^2+OI^2=AI^2

=>AI^2=4^2+3^2=25

=>AI=5cm

Xét ΔAOI vuông tại O và ΔAMB vuông tại M có

góc OAI chung

Do đó: ΔAOI đồng dạng với ΔAMB

=>AO/AM=AI/AB

=>4/AM=5/8

=>AM=4*8/5=6,4cm

ΔAMB vuông tại M

=>AM^2=AB^2+MB^2

=>MB^2=8^2-6,4^2=4,8^2

=>MB=4,8cm

ΔMAB vuông tại M có MH là đường cao

nên MH*AB=MB*MA

=>MH*8=4,8*6,4

=>MH=3,84(cm)

27 tháng 8 2023

Cảm ơn ạ

 

9 tháng 9 2020

C D H M O K

 Kéo dài HO về phía O cắt (o) tại K => KH là đường kính (o). Nối CH; CK ta có 

^KCH=90 (góc nội tiếp chắn nửa đường tròn)

CM=DM=CD/2=8 cm (bán kính vuông góc với dây cung thì chia đôi dây cung)

 Xét tg vuông KCH có \(CM^2=MH.MK\Rightarrow8^2=4.MK\Rightarrow MK=16cm\)

\(\Rightarrow KH=MH+MK=4+16=20cm\Rightarrow OK=\frac{KH}{2}=10cm\)

9 tháng 11 2021

loading...  loading...  

NM
4 tháng 10 2021

ta có : 

undefined

22 tháng 4 2017

Đặt OH = x cm (R = OH)

Ta có OM = x – 4 cm

Áp đụng định lý Pytago ta tìm được x = 10cm

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DFBÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DFBài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ...
Đọc tiếp

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF

BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF

Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD

Bài 4 cho tam giác ABC cân nội tiếp đường tròn O

A chừng minh AO là đường trung trực của BC

B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm

Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA

gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F

A Cm tam giác ICD cân

gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK

giúp mình với mình cảm ơn nhiều 

0
19 tháng 10 2020

Gọi MP, QP cắt AB tại K, L

Ta chứng minh được PQ vuông góc AB

\(\Delta\)AON đồng dạng \(\Delta\)APB suy ra \(AN=AM=\sqrt{OA^2+OM^2}=\frac{R\sqrt{5}}{2}\)

\(\frac{AO}{AP}=\frac{ON}{PB}=\frac{AN}{AB}\Rightarrow\frac{R}{AP}=\frac{\frac{R}{2}}{PB}+\frac{\frac{R\sqrt{5}}{2}}{2R}=\frac{\sqrt{5}}{4}\Rightarrow AP=\frac{4R\sqrt{5}}{5};BP=\frac{2R\sqrt{5}}{5}\)

Ta có

\(BP^2=BL.AB\Rightarrow BL=\frac{BP^2}{AB}=\frac{2R}{5};OL=OB-BL=\frac{3R}{5};PL=\sqrt{BP^2-BL^2}=\frac{4R}{5}\)\(\frac{KL}{OK}=\frac{KP}{MK}=\frac{PL}{OM}=\frac{\frac{4R}{5}}{\frac{R}{2}}=\frac{8}{5}\Rightarrow\frac{KL}{8}=\frac{OK}{5}=\frac{OL}{13}=\frac{\frac{3R}{5}}{13}=\frac{3R}{65}\Rightarrow KL=\frac{24R}{65};OK=\frac{3R}{13}\)

\(MP=MK+KP=\sqrt{OM^2+OK^2}+\sqrt{KL^2+PL^2}=\frac{\sqrt{205}R}{10}\)

có \(MP=\frac{\sqrt{205}R}{10},AP=\frac{4R\sqrt{5}}{5};AM=\frac{R\sqrt{5}}{2}\)

\(AM^2+MP^2\ne AP^2\)nên MA không vuông góc MP

22 tháng 10 2020

Sorry, vừa rồi mình nhầm O với giao điểm của AB với QN.

Mình sửa lại như sau: Gọi H là giao của QN và AB, F là giao của AB và QP. Từ P vẽ PK vuông góc với CD tại K. 

Giả sử AQ vuông góc với MP suy ra H là trực tâm tam giác AQP. Suy ra BH = 2 . BF.

Vì HN song song với BP và PK // AO ta có đẳng thức sau:

NK/NO = PK / AO = NP/NA = BH/HA

suy ra

(r-KD)/(r/2) = (r-BF)/r = 2BF/(2r-2BF)

ở đó r là bán kính đường tròn (O). Ngoài ra ta còn có BF.(2r-BF) = PF^2 = (r-KD)^2

Từ đó rút ra điều vô lý.

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0