K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 12 2015
Gọi AB giao MN là T
MN giao CD là K
Tam giác TAM đồng dạng TBN
KMD đồng dạng KNC
=>\(\frac{TA}{TB}=\frac{TM}{TN}=\frac{KM}{KN}=\frac{KD}{KC}=\frac{AD}{BC}\)
M,N cố định => K trùng T => đpcm
8 tháng 4 2022
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
Ta có: MC+MD=CD
nên CD=CA+DB
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot DM=OM^2=R^2\)
hay \(AC\cdot BD=R^2\)
a) \(\Delta\)ABD \(\approx\)\(\Delta\)BCA ( A= B =90 ; B = C cung phụ góc BAC )
=> AB/ BC = AD/BA => AD.BC = AB2 =4R2 không đổi
b) + CM : M là trung điểm AD
MA=ME =>gocs EAM = AEM => MED = EDM ( cùng phụ EAD )
=> ME=MD =MA => M là trung điểm AD
+ tương tự N là trung ddiemr BC
* Nếu E chính giữa AB => MN//AB//DC
** E không chính giữa AB
=> Gọi AB x CD tại K ( áp dụng talet => trung tuyến KM trùng trung tuyến KN)
=> 3 đường đồng quy.
c) cô si AD+ BC >/ 2 căn AD.BC = 2R
=> S min =AB .(AD+BC) /2 = 2R.R = 2R2
khi AD =BC ( E chính giữa AB)
tự trình bày cho rõ nhé..