Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △AKC và △DBC có: C = 900, góc KAC = góc CDB (cùng phụ với góc B) => △AKC đồng dạng với △DBC => AC/DC = KC/BC=> KC.DC = AC.BC (✳)
Cũng có △IAB vuông tại I có IC vuông góc với AB nên theo hệ thức lượng trong tam giác vuông ta có IC2=AC.CB (**)
Từ (*) và (**) => KC.DC=IC2 => KC/IC=IC/DC=1/2 => DC = 2IC
IC2=AC.BC=1/2R . 3/2R = 3/4R2 =>IC = \(\sqrt{ }\)3/2 R=> DC = căn 3 R.
S△ADB = 1/2 DC.AB=căn 3 R2
a) Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow\angle ACD=\angle AMD=90\)
\(\Rightarrow ACMD\) nội tiếp
b) Ta có: \(\angle KCB+\angle KMB=90+90=180\Rightarrow KCBM\) nội tiếp
\(\Rightarrow\angle AKC=\angle MBA\)
Ta có: \(\angle NMK=\angle MBA=\angle AKC=\angle MKN\)
\(\Rightarrow\Delta NMK\) cân tại N
c) Vì B và E đối xứng với nhau qua C \(\Rightarrow\) CD là trung trực BE
\(\Rightarrow\angle DEC=\angle DBC=\angle AKC\Rightarrow AKDE\) nội tiếp
1: Vì A,E,M,B cùng nằm trên (O)
nên AEMB nội tiếp
góc AMB=1/2*180=90 độ
=>AM vuông góc IB
ΔIAB vuông tại A có AM vuông góc IB
nên IA^2=IM*IB
góc CID=1/2*180=90 độ
=>CI vuông góc HD
góc CND=1/2*180=90 độ
=>DN vuông góc CH
Vì góc HNM+góc HIM=180 độ
nên HNMI nội tiếp
Xét ΔGCD vuông tại C có CN là đường cao
nên CN^2=NG*ND