Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C H D I J E
a) Ta có: ^CBH=^ACH (Cùng phụ ^HCB) (1)
Xét \(\Delta\)CHD: I và J lần lượt là trung điểm của CH & DH => IJ là đường trung bình \(\Delta\)CHD
=> IJ // CD => IJ // AC => ^CIJ=^ACH (So le trg) (2)
Từ (1) và (2) => ^CIJ=^CBH (đpcm).
b) Thấy CJ là đường trung bình của tam giác ADH => \(\frac{CJ}{AH}=\frac{1}{2}\)
Mà \(\frac{HI}{CH}=\frac{1}{2}\)(Do I là trg điểm CH) => \(\frac{CJ}{AH}=\frac{HI}{CH}\Rightarrow\frac{CJ}{HI}=\frac{AH}{CH}\)
Dễ c/m \(\Delta\)AHC ~ \(\Delta\)CHB => \(\frac{AH}{CH}=\frac{CH}{HB}\Rightarrow\frac{CJ}{HI}=\frac{CH}{HB}\)
Lại có: CJ//AB và CH vuông AB => CH vuông CJ => ^JCH=900
Xét \(\Delta\)CJH và \(\Delta\)HIB: ^JCH=^IHB; \(\frac{CJ}{CH}=\frac{CH}{HB}\)=> \(\Delta\)CJH~\(\Delta\)HIB (c.g.c) (đpcm).
c) Ta có: ^HIB + ^HBI = 900. Mà ^HBI=^CHJ (Do \(\Delta\)CJH~\(\Delta\)HIB) => ^HIB+^CHJ=900
=> Tam giác HEI vuông tại E => ^IEJ=900
Xét tứ giác CIEJ: ^IEJ=^ICJ=900 => Tứ giác CIEJ nội tiếp đường tròn
=> ^ECI=^EJI hay ^ECH=^HJI. Mà ^HJI=^HDC (Vì IJ//CD) => ^ECH=^HDC
Xét \(\Delta\)HEC và \(\Delta\)HCD: ^ECH=^CDH (cmt); ^CHD chung => \(\Delta\)HEC~\(\Delta\)HCD (g.g)
Suy ra: \(\frac{HE}{HC}=\frac{HC}{HD}\Rightarrow HE.HD=HC^2\)(đpcm).
có vài chỗ bạn ghi nhầm nha, may là mình cũng thuộc hàng top của huyện nên mới hiểu đc đó
a) Tự làm nhá
b) +) CM \(\Delta ADC~\Delta HDE\left(g-g\right)\)
=> DA.HE=DH.AC
+) \(\Delta BAD\)cân\(=>\widehat{BAD}=90^0-\frac{1}{2}\widehat{B}=\widehat{CAD}\)
mà \(\widehat{CAD}=\widehat{B}\)
=> AD là tia phân giác góc HAC => Góc HAE = góc CAE => cung HE= cung CE => cạnh HE = cạnh CE => tam giác cân (dpcm)
3) Xét \(\Delta MNP\)zuông tại M ngoại tiếp đươg tròn tâm I , bán kính r , tiếp xúc các cạnhMN , MP,NP thứ tự tại D, E ,F
ta có \(\widehat{IEM}=\widehat{IDM}=\widehat{DME}=90\);ID =IE=r
=> tứ giác IEMD là hình zuông
=> MD=ME=r
Có ND=NF,PE =PF( các tia tiếp tuyến cắt nhau)
=> MN+MP-NP=MD+ND+ME+PE-NF-PF=MD+ME=2r
tam giác ABH zuông tại H có \(\hept{\begin{cases}R_1=\frac{AH+BH-AB}{2}\\\end{cases}}\)
Tam giác ACH zuông tại H có \(R_2=\frac{AH+CH-AC}{2}\)
tam giác ABC zuông tại A có \(R_3=\frac{AB+AC-BC}{2}\)
\(=>R_1+R_2+R_3=AH\)
ta có \(AH\le AO=\frac{6}{2}=3cm\)
dấu = xảy ra khi H trung O
=> A là điểm chính giữa cung BC
Nguồn : https://qanda.ai/vi/solutions/npWTTopujG-Cho-n%E1%BB%ADa-%C4%91%C6%B0ong-tr%C3%B2n-t%C3%A2m-O-d%C6%B0%E1%BB%9Dng-k%C3%ADnh-BC6cm-Tr%C3%AAn-n%E1%BB%ADa-%C4%91%C6%B0%E1%BB%9Dng-tr%C3%B2n