K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

                                                           bài làm

a, gọi H là tiếp điểm của tiếp tuyến MN 

theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ

vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH

b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

Theo hệ thức lượng trong tam giác vuông: OI^2=MI.INOH2=MH.HNAM.BN=MI.NI=OI^


Vì vậy AM.BN=MI.NI=OI^2=R^2AM.BN=MH.NH=
\(OH^2\)
=\(R^2\)


 

 

 

 

24 tháng 11 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)

Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)

Hay CM + DM = 5 ⇒ DM = 5 – CM (1)

Tam giác COD vuông tại O có OM ⊥ CD

Theo hệ thức lượng trong tam giác vuông, ta có:

O M 2  = CM.DM ⇔ 2 2 = CM.DM ⇔ 4 = CM.DM (2)

Thay (1) vào (2) ta có: CM.(5 – CM) = 4

⇔ 5CM – C M 2 – 4 = 0 ⇔ 4CM – C M 2  + CM – 4 = 0

⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0

⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0

⇔ CM = 1 hoặc CM = 4

Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)

Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

Tính chất hai tiếp tuyến cắt nhau

16 tháng 12 2018

cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh

a) Các đường tròn O và i tiếp xúc với nhau

b) AM là tiếp tuyến chung của hai đường tròn O và i

c) tam giác OMI vuông

d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.

25 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

28 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)

Theo hệ thức lượng trong tam giác vuông, ta có:

O I 2 = MI.NI

Mà: MI = MA, NI = NB (chứng minh trên)

Suy ra : AM.BN =  O I 2  =  R 2

7 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MA = MI (tính chất hai tiếp tuyến cắt nhau)

NB = NI (tính chất hai tiếp tuyến cắt nhau)

Mà: MN = MI + IN

Suy ra: MN = AM + BN