K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

DC,DA là tiếp tuyến

=>DC=DA và OD là phân giác của góc AOC(1)

Xét (O) có

EC,EB là tiếp tuyến

=>EC=EB và OE là phân giác của góc BOC(2)

Từ (1), (2) suy ra:

góc DOE=1/2(góc COA+góc COB)

=1/2*180=90 độ

b: DC+CE=DE

DC=DA

EB=EC

Do đó: DA+EB=DE

c: Xét ΔDOE vuông tại O có OC là đường cao

nên CD*CE=CO^2

=>CD*CE=R^2 không đổi

d: Sửa đề; Đường kính DE

Gọi K là trung điểm của DE

ΔDOE vuông tại O

=>O nằm trên đường tròn đường kính DE

=>O nằm trên (K)

Xét hình thang ADEB có

K,O lần lượt là trung điểm của DE,AB

=>KO là đường trung bình

=>KO//AD//EB

=>KO vuông góc AB

Xét (K) có

KO là bán kính

AB vuông góc KO tại O

Do đó: AB là tiếp tuyến của (K)

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi