Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc COD=90 độ
=>góc CBD=45 độ
Xét (O) có
ΔACB nội tiếp
AB là đường kính
DO đó: ΔACB vuông tại C
=>CB vuông góc với AE
=>góc CEB=45 độ
b: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác ECKD có
góc ECK+góc EDK=180 độ
nên ECKD là tứ giác nội tiếp
Tâm I là trung điểm của CK
c: góc IDO=góc IDK+góc ODK
=góc IKD+góc OAK
=90 độ
=>OD là tiếp tuyến của (I)
VE HINH
â) Xét tứ giác KCID ,co:
gocI = (cungAB+cungCD):2 = (180+60):2 = 120 độ
gocK=(cungAB-cungCD):2 =(180-60):2=60 độ
gócI+gocK=120do+60do=180 do
Vay : tứ giác KCID nội tiếp (tổng số đo 2 góc đối diện=180 độ )
:góc AKB = 60 độ
b)Ta có:AB//CD
=>cungAC=cungBD=(180-60):2=60 do (2 cung nằm giữa 2 dây song song thì = nhau )
=>AC=BD(2 dây chan 2 cung = nhau thi = nhau ) (1)
=>tứ giác ACDB là hình thang cân
***Xét : 3giac AKDva 3giac BKC ,co:
gocD=gocC=90do (vi gocC va gocD là góc nội tiếp chắn nửa đường tròn)
gocCAD=gocDBC(2goc noi tiep cung chan cungCD)
AD=BC(2 đường chéo của hình thang cân thì = nhau )(cmt)
Do do:3giacAKD =3giacBKC (g-c-g)
=>KD=KC (2 canh tương ứng) (2)
Ta lại có :KA=KC+AC(C nam giua A va K)
}(3)
:KB=KD+BD(D nam giua B va K)
Tu (1) ,(2) va (3) suy ra KA=KB (4)
Tu (2) va (4) suy ra KA.KC=KB.KD .
a) ∠ACB = 90o (góc nội tiếp chắn nửa đường tròn)=>∠FCE = 90o
∠ADB = 90o (góc nội tiếp chắn nửa đường tròn)=>∠FDE = 90o
Xét tứ giác CEDF có:
∠FCE = 90o
∠FDE = 90o
=> ∠FCE + ∠FDE = 180 o
=> Tứ giác CEDF là tứ giác nội tiếp
b) Xét ΔAFD và ΔBFC có:
∠AFB là góc chung
∠ADF = ∠BCF = 90o
=> ΔAFD ∼ ΔBFC
\(\Rightarrow\frac{FA}{FB}=\frac{FD}{FC}\)=> FA.FC = FB.FD
c) Do ∠FCE = 90oNên FE là đường kính đường tròn ngoại tiếp tứ giác CEDF
Do đó trung điểm I của FE là tâm đường tròn ngoại tiếp tứ giác CEDF
Tam giác CFI có IC = IF => ΔCFI cân tại I
=> CFI = ∠FCI
Tứ giác CEDF nội tiếp =>∠CFI = CDE (2 góc nội tiếp cùng chắn \(\widebat{EC}\))
Tứ giác ACDB nội tiếp =>∠CDE = ∠CBA(2 góc nội tiếp cùng chắn \(\widebat{AC}\))
ΔAOB cân tại O =>∠BCO = ∠CBA
=> ∠FCI = ∠BCO
=> ∠FCI + ∠ECI = ∠BCO + ∠ECI <=> ∠FCE = ∠ICO
=> ∠ICO = 90o
Vậy IC là tiếp tuyến của (O)
d) Chứng minh tương tự câu c, ta có ∠IDO) = 90o
Xét tứ giác ICOD có:
∠ICO = ∠IDO = ∠COD = 90o
=> Tứ giác ICOD là hình chữ nhật
Lại có OC = OD = R
=> Tứ giác ICOD là hình vuông.
Có OI là đường chéo hình vuông cạnh R
=> OI = R√2
O cố định, do đó I thuộc đường tròn tâm O, bán kính R√2 cố định
HÌNH THÌ VÀO THỐNG KÊ NHA
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé
a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )
xét tứ giác FCDE có góc FCD+FED=90°+90°=180°
suy ra FCDE nội tiếp
b,xét hai tam giác CED và ABD có
góc CDE=ADB( đđ )
góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)
suy ra hai tam giác đó đồng dạng
suy ra DE/DB=DC/AD
suy ra DE.DA=DB.DC(đpcm)
c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)
góc CED=CBA( góc nội tiếp chắn cung CA)(2)
góc CDF=DCI( tam giác CID cân tại I)(3)
góc OCB=CBO( tam giác OCB cân tại O)(4)
từ 1,3 suy ra góc CEF=DCI(5)
từ2,4 suy ra OCB=CEA(6)
mà góc CEF+CEA=90°(7)
từ 5,6,7 suy ra góc DCI+OCB=90°
suy ra CI là tiếp tuyến của (O)(đpcm)
a: góc ACB=góc AEB=1/2*180=90 độ
=>CB vuông góc FA,AE vuông góc FB
góc FCD+góc FED=180 độ
=>FCDE nội tiếp
b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có
góc CDA=góc EDB
=>ΔDCA đồng dạng với ΔDEB
=>DC/DE=DA/DB
=>DA*DE=DB*DC