Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tứ giác IEHFIEHF nội tiếp được đường tròn.
Ta có ∠AEB=∠AFB=900∠AEB=∠AFB=900 (góc nội tiếp chắn nửa đường tròn) ;
⇒AE⊥EB,AF⊥EB⇒AE⊥EB,AF⊥EB hay BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900.
Xét tứ giác IEHFIEHF có: ∠IEH+∠IFH=900+900=1800⇒∠IEH+∠IFH=900+900=1800⇒ Tứ giác IEHFIEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).
b) Chứng minh ∠AIH=∠ABE∠AIH=∠ABE.
Cách 1:
Ta có IEHFIEHF là tứ giác nội tiếp (cmt) ⇒∠EIH=∠EFH⇒∠EIH=∠EFH (hai góc nội tiếp cùng chắn cung EHEH)
Hay ∠AIH=∠EFA.∠AIH=∠EFA.
Mà ∠EBA=∠EFA∠EBA=∠EFA (hai góc nội tiếp cùng chắn cung AFAF của (O)(O))
⇒∠AIH=∠ABE(=∠EFH).(dpcm)⇒∠AIH=∠ABE(=∠EFH).(dpcm)
Cách 2:
Xét tam giác IABIAB có hai đường cao AF,BEAF,BE cắt nhau tại H⇒HH⇒H là trực tâm tam giác IABIAB.
⇒IH⊥AB⇒IH⊥AB hay IK⊥ABIK⊥AB tại KK.
Xét tam giác vuông AIKAIK có: ∠AIK+∠IAK=900⇔∠AIH+∠IAB=900∠AIK+∠IAK=900⇔∠AIH+∠IAB=900.
Xét tam giác vuông ABEABE có: ∠ABE+∠EAB=900⇔∠ABE+∠IAB=900∠ABE+∠EAB=900⇔∠ABE+∠IAB=900.
Do đó ∠AIH=∠ABE∠AIH=∠ABE.
c) Chứng minh cos∠ABP=PK+BKPA+PBcos∠ABP=PK+BKPA+PB.
Nối PA,PBPA,PB ta có ∠APB=900∠APB=900 (góc nội tiếp chắn nửa đường tròn).
Xét tam giác BPKBPK và tam giác BAPBAP có:
∠ABP∠ABP chung;
∠BKP=∠BPA=900;∠BKP=∠BPA=900;
⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB (hai cặp cạnh tương ứng tỉ lệ).
Áp dụng tính chất dãy tỉ số bằng nhau ta có: PKPA=BKPB=PK+BKPA+PBPKPA=BKPB=PK+BKPA+PB (1).
Xét tam giác vuông BKPBKP ta có: cos∠ABP=cos∠KPB=BKPBcos∠ABP=cos∠KPB=BKPB (2).
Từ (1) và (2) ta có cos∠ABP=PK+BKPA+PBcos∠ABP=PK+BKPA+PB.
d) Gọi SS là giao điểm cuả tia BFBF và tiếp tuyến tại AA của nửa đường tròn (O)(O). Khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK.
Xét tứ giác AEHKAEHK có: ∠AEH+∠AKH=900+900=1800⇒∠AEH+∠AKH=900+900=1800⇒ Tứ giác AEHKAEHK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).
⇒∠HEK=∠HAK=FAB⇒∠HEK=∠HAK=FAB (hai góc nội tiếp cùng chắn cung HKHK);
Lại có ∠FAB=∠FEB∠FAB=∠FEB (hai góc nội tiếp cùng chắn cung FBFB của (O)(O));
⇒∠HEK=∠FEB⇒EB⇒∠HEK=∠FEB⇒EB là phân giác của ∠FEK∠FEK ⇒∠FEK=2∠FEB=2∠FAB⇒∠FEK=2∠FEB=2∠FAB (3).
Ta có: {IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒{IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒ Tứ giác AHISAHIS là hình thang (Tứ giác có 2 cạnh đối song song).
Khi AHISAHIS là tứ giác nội tiếp thì ∠SAH+∠SIH=1800∠SAH+∠SIH=1800 (tổng hai góc đối của tứ giác nội tiếp) ;
Mà ∠SAH+∠AHI=1800∠SAH+∠AHI=1800 (hai góc trong cùng phía bù nhau) ;
⇒∠SIH=∠AHI⇒⇒∠SIH=∠AHI⇒ Tứ giác AHISAHISlà hình thang cân.
Do đó ∠ISA=∠SAH∠ISA=∠SAH (Tính chất hình thang cân) hay ∠BSA=∠SAF∠BSA=∠SAF.
Mà ∠SAF=∠SBA∠SAF=∠SBA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AFAF );
⇒∠BSA=∠SBA⇒ΔSAB⇒∠BSA=∠SBA⇒ΔSAB vuông cân tại A⇒∠SBA=450A⇒∠SBA=450.
⇒ΔFAB⇒ΔFAB vuông cân tại F⇒∠FAB=450F⇒∠FAB=450 (4).
Từ (3) và (4) ta có ∠FEK=2∠FAB=2.450=900∠FEK=2∠FAB=2.450=900.
Vậy khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK(đpcm).
a, ta có : góc AEB = 90 độ
suy ra góc HEI = 90 độ
tương tự ta có góc HFI = 90 độ
suy ra : góc HEI + góc HFI = 180 độ
suy ra IEHF nội tiếp đường tròn
b, góc AIH = AFE
mà góc ABE = góc AFE
suy ra góc AIH = góc ABE
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)
a) Tứ giác ACEH có
ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)
=> tứ giác ACHE nội tiếp
b) tứ giác ACHE nội tiếp
=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)
lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)
mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900
=>ˆEAH+ˆADF=900EAH^+ADF^=900
=> DF⊥ABDF⊥AB
mà EH⊥ABEH⊥AB
=> DF//EHDF//EH
c)các bước chứng minh nè :
cm HOD=DCH (2 góc cùng nhìn DH)
thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D
a) Vì AB là đường kính \(\Rightarrow\angle ADB=\angle ACB=90\)
\(\Rightarrow\angle FDE+\angle FCE=90+90=180\Rightarrow ECFD\) nội tiếp
b) GH cắt AD tại F'.F'B cắt AE tại C'
Ta có: \(\left\{{}\begin{matrix}F'H\bot AB\\BD\bot AF'\end{matrix}\right.\Rightarrow E\) là trực tâm \(\Delta F'AB\Rightarrow AE\bot F'B\Rightarrow AC'\bot F'B\)
mà AB là đường kính \(\Rightarrow C'\in\left(O\right)\Rightarrow C\equiv C'\Rightarrow F'\equiv F\Rightarrow\) đpcm