K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

BHA=90 BHB=90

 

7 tháng 12 2021

ta có góc CBM là góc nội tiếp chắn cung CM

         góc MBA là góc nội tiếp chắn cung MA

mà cung CM= cung MA( vì M là điểm chính giữa của cung CA)

=> góc CBM= góc MBA

hay BM là tia phân giác của góc CBA

CM tương tự ta có: AN là tia phân giác của góc CAB

xét tam giác CAB có

2 tia phân giác BM và AN cắt nhau tại I

=> I là tâm đường tròn nội tiếp tam giác CAB

=> CI là tia phân giác của góc ACB(đpcm)

 

a: sđ cung AC=2/3*180=120 độ

=>sđ cung AM=sđ cung MC=120/2=60 độ

sđ cung NB=sđ cung NC=60/2=30 độ

góc MIC=1/2(sđ cung AB+sđ cung MC)

=1/2(180+60)=120 độ

b: N là điểm chính giữa của cung BC

=>ON vuông góc bC

=>ON//AC
=>DN vuông góc NO

=>DN là tiếp tuyến của (O)

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
16 tháng 2 2021

Bài 2: Cho nửa đường tròn (O) đường kính AB, điểm C thuộc nửa đường tròn có số đo bằng 60o. Gọi E, F lần lượt là điểm chính giữa của các cung AC và BC, I là giao điểm của AF và BE

a) Tính số đo các góc của .

b) Chứng minh: CI là phân giác của góc ACB

c) Chứng minh: Tứ giác ABFC là hình thang cân.

16 tháng 2 2021

C thuộc nửa đường tròn có số đo bằng 60o tức là \(\widehat{AOC}\) hay \(\widehat{BOC}\) bằng 60o vậy bạn?

3 tháng 9 2018

c) Vì  F C H = F D H = 90 o  nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH

=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI

=> OI là phân giác của góc COD

d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o

Có  C A D = 1 2 C O D = 30 o = > C F D = 90 o − C A D = 60 o  

Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có

CID = 2CFD = 120o => OIC = OID =  C I D 2 = 60 o

Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có

CID = 2CFD = 120o => OIC = OID  = C I D 2 = 60 o

Mặt khác COI = DOI =  C O D 2 = 30 o = > O I D + D O I = 90 o = > Δ O I D  vuông tại D

Suy ra O I = O D sin 60 o = 2 R 3  

Vậy I luôn thuộc đường tròn  O ; 2 R 3  

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
2 tháng 4 2019

1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn.

Ta có M là điểm chính giữa cung A B ⏜ ⇒ A M ⏜ = B M ⏜ ⇒ M N A ^ = M C B ^  

⇒ K N I ^ = I C K ^ . Tứ giác CNKJ có C và N là 2 đỉnh kề nhau cùng nhìn cạnh KJ dưới góc bằng nhau nên CNKJ nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp)

Do đó bốn điểm C, N, K, I  cùng thuộc một đường tròn.