K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, xét từ giác AMNC có 
\(\widehat{CAM}\)=90CAM^=90∘ (Ac là tiếp tuyến của (O) , ˆ

\(\widehat{CNM}\)=90CNM^=90∘ (MN vuông góc với CD) => ˆ\(\widehat{CAM}+\widehat{CNM}\)=180

=> AMNC nội tiếp

Xét tứ giác BMND có ˆ\(\widehat{MNB}\)MBD^=90 ( BD là tiếp tuyến của (O) , \(\widehat{CND}\)=90 ( MN vuông góc với CD)

=> \(\widehat{MND}+\widehat{NAC}\)NAC^=180

=> Tứ giác BDMN nội tiếp

b, Ta có \(\widehat{CMN}=\widehat{NAC}\)NAC^ (cùng chắn CN)

=> \(\)\(\widehat{CMN}\)CMN^=1212 cung AN(1)

Ta cũng có\(\widehat{NMD}+\widehat{NMD}\)NBD^ (cùng chắn cung ND)

\(\widehat{NMD}\)=1212 cung NB(2)

Từ (1) và (2) => \(\widehat{CMD}+\widehat{NMD}\)NMD^1212 (cung AN + cung NB) 

=> \(\widehat{CMD}\)1212 cung AB = 18021802=90

=> tam giác CMD vuông tại M

Vì NMBD nội tiếp => \(\widehat{NDM}+\widehat{NBM}\)NBM^ ( góc nội tiếp cùng chắn cung AM) 

Mà \(\widehat{MCD}+\widehat{NBM}\)=90

=> \(\widehat{MCD}+\widehat{NBM}\)NBM^=90 (1)

Mặt khác \(\widehat{NAB}+\widehat{NBA}\)NBA^=90 (2)

Từ (1) và (2) => \(\widehat{MCD}=\widehat{NAB}\)

Xét tam giác ANB và CMD ta cs

\(\widehat{ANB}=\widehat{CMD}\) (=90)

\(\widehat{MCD}=\widehat{NAD}\)

=> 2 tam giác này bằng nhau

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH

\(a,\\ \widehat{CAM}=\widehat{CNM}=90^0\\ \Rightarrow CNMA.là,tứ.giác.nội.tiếp\\ \widehat{MND}=\widehat{MBD}=90^0\\ \Rightarrow NMBF.là.tứ,giác.nội.tiếp\\ b,CNMA.nội.tiếp\\ \Rightarrow\widehat{NAM}=\widehat{NCM}\\ MNDB.nội.tiếp\\ \Rightarrow\widehat{NDM}=\widehat{NBM}\) 

\(\Delta CMD.và.\Delta AnpNB:\\ \widehat{NAM}=\widehat{NCM};\widehat{NDM}=\widehat{ABM}\\ \Rightarrow\Delta....đồng.dạng.\Delta....\)

8 tháng 2 2022

bn tk😂:

undefined

1. Cho đường tròn (O) có bán kính R và điểm C nằm ngoài đường tròn. Đường thẳng CO cắt đường tròn tại hai điểm A và B ( A nằm giữa C và O). Kẻ tiếp tuyến CM đến đường tròn ( M là tiếp điểm). Tiếp tuyến của đường tròn (O) tại A cắt CM tại E và tiếp tuyến của đường tròn (O) tại B cắt CM tại F.a./ Chứng minh tứ giác AOME nội tiếp đường tròn.b./ Chứng minh và CE.MF=CF.MEc./ Tìm...
Đọc tiếp

1. Cho đường tròn (O) có bán kính R và điểm C nằm ngoài đường tròn. Đường thẳng CO cắt đường tròn tại hai điểm A và B ( A nằm giữa C và O). Kẻ tiếp tuyến CM đến đường tròn ( M là tiếp điểm). Tiếp tuyến của đường tròn (O) tại A cắt CM tại E và tiếp tuyến của đường tròn (O) tại B cắt CM tại F.
a./ Chứng minh tứ giác AOME nội tiếp đường tròn.
b./ Chứng minh và CE.MF=CF.ME
c./ Tìm điểm N trên đường tròn (O) (N khác M) sao cho tam giác NEF có diện tích lớn nhất. Tính diện tích lớn nhất đó theo R, biết góc AOE =30 độ

2. Hai đơn vị bộ đội cùng một lúc đi từ hai địa điểm A và B để gặp nhau. Đơn vị đi từ A mỗi giờ đi được 4km. Đơn vị đi từ B mỗi giờ đi được 5km. Một người liên lạc đi xe đạp với vận tốc 12km/h lên đường cùng một lúc với các đơn vị bộ đội, bắt đầu từ A để gặp đơn vị đi từ B. Khi gặp đơn vị này rồi, người liên lạc lặp tức quay về gặp đơn vị đi từ A và khi gặp đơn vị này rồi lặp tức quay về để gặp đơn vị đi từ B và cứ như thế đến khi hai đơn vị gặp nhau. Biết rằng AB dài 27km. Tính quãng đường liên lạc đã đi.

3. Cho nửa đường tròn tâm O và đường kính AB. Lấy điểm M thuộc đoạn thẳng OA, điểm N thuộc nửa đường tròn (O). Từ A và B vè các tiếp tuyến ax và by. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.
a) Chứng minh ACNM và BDNM là các tứ giác nội tiếp đường tròn
b) Chứng minh tam giác ANB đồng dạng với tam giác CMD
c) Gọi I là giao điểm của An và CM. K là giao điểm của BN và DM. Chứng minh IK // AB 

4. Quãng đường AB dài 120km. Một ô tô khởi hành từ A đi đến B và một mô tô khởi hành từ B đi đến A cùng lúc. Sau khi gặp nhau tại điểm C, ô tô chạy thêm 20 phút nữa thì đến B, còn mô tô chạy thêm 3 giờ nữa thì đến A. Tìm vận tốc của ô tô và vận tốc của mô tô

0