K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

                        VẼ HÌNH     (chú thích : c là cùng / g là gốc /) 

Ta có :cBC=cCD+cBD

          :cAD=cCD+cAC    

mà :cAD=cBC(gt)

Do do : cBD=cAD (1)

Ta có:gocCAB la goc noi tiep chan cBC (2)

        :gocDBA la goc noi tiep chan cAD(3)

Từ(1),(2) va (3) suy ra :gocCAB=gocDBA

=> Tứ giác ACDB là hình thang cân(vì sd 2 gốc ở đay=nhau)

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
15 tháng 5 2016

d) tam giác ABC dùng sin,cos,tan,cot gì đó tính ra CB và AC thì ta đước IB=CB

Xét tam giác KIB và tam giác ACB

có : AB=IB(tam giác IBC đều -cmt)

ACB=KIB=90

KBI=CBA(cùng chắn 2 cung bằng nhau)

=>hai tam giác bằng nhau 

=> KI=AC

S=(KI+AB)*IB)/2

15 tháng 5 2016

a) vì cung AC ,,cung CD , cung BD bằng nhau 

=>góc COC=góc COD=góc BOD

mà tổng của chúng =180độ

=>mỗi góc = 60 độ

=>..............................

3 tháng 5 2018

         VE HINH

â) Xét tứ giác KCID ,co:

 gocI = (cungAB+cungCD):2   = (180+60):2 = 120 độ 

  gocK=(cungAB-cungCD):2   =(180-60):2=60 độ 

gócI+gocK=120do+60do=180 do 

Vay :  tứ giác KCID nội tiếp (tổng số đo 2 góc đối diện=180 độ )

       :góc AKB = 60 độ 

3 tháng 5 2018

b)Ta có:AB//CD

=>cungAC=cungBD=(180-60):2=60 do (2 cung nằm giữa 2 dây song song thì = nhau ) 

=>AC=BD(2 dây chan 2 cung = nhau thi = nhau )    (1)

=>tứ giác ACDB là hình thang cân 

***Xét : 3giac AKDva  3giac BKC ,co:

gocD=gocC=90do (vi gocC va gocD là góc nội tiếp chắn nửa đường tròn) 

gocCAD=gocDBC(2goc noi tiep cung chan cungCD)

AD=BC(2 đường chéo của hình thang cân thì = nhau )(cmt)

Do do:3giacAKD =3giacBKC (g-c-g)

=>KD=KC (2 canh tương ứng)     (2)

Ta lại có :KA=KC+AC(C nam giua A va K)  

                                                                      }(3) 

              :KB=KD+BD(D nam giua B va K)

Tu (1) ,(2) va (3) suy ra KA=KB  (4)

Tu (2) va (4) suy ra KA.KC=KB.KD .

30 tháng 6 2015

b)

 + Xét đt (o) có

      tứ giác BFACN nội tiếp đt

    \(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)

    

  CÓ :  

      BD là tiếp tuyến đt (o) tại B(gt)

       \(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)

       \(\rightarrow\)BD vuông góc BC (O thuộc BC)

        \(\rightarrow\) DBC = 90(dn)

        \(\rightarrow\)tam giác DBC vuông tại B

        xét tam giác vuông DBC cso

          BDC+DCB=90(2 góc phụ nhau trong tg vuông)        (1)

        +Xét đt (o) có: 

             BAC= 90 ( góc nt chắn nửa dtđk BC)
              \(\rightarrow\)tam giác BAC vuông tại A

          Xét tam giác vuông BAC có

                ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)

              \(\rightarrow\) ABC+DCB=90(A thuộc DC )                                 (2)

                từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)

                                       Mà AFC=ABC(CMT) 

                                \(\rightarrow\) BDC=AFC(=ABC)

          +Có :

                 AFC+AFE=180( 2 góc kề bù)

               Mà 2 góc ở vị trí đối nhau 

             \(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)                        

   
 

      

  

 

20 tháng 10 2017

a) Vì C, D thuộc nửa đường tròn đường kính AB nên

A C B = A D B = 90 o ⇒ F C H = F D H = 90 o ⇒ F C H + F D H = 180 o  

Suy ra tứ giác CHDF nội tiếp

b) Vì AH BF, BH AF nên H là trực tâm ∆ AFB FH AB

⇒ C F H = C B A ( = 90 o − C A B ) ⇒ Δ C F H ~ Δ C B A ( g . g ) ⇒ C F C B = C H C A ⇒ C F . C A = C H . C B

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0