Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a: góc AHM+góc AKM=180 độ
=>AHMK nội tiếp
b: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
góc HBM=góc KCM
=>ΔMHB đồng dạng vơi ΔMKC
=>MH/MK=MB/MC
=>MH*MC=MB*MK
a: góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a. góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a: góc AHM+góc AKM=90+90=180 độ
=>AHMK là tứ giác nội tiếp
b: Xét ΔMBH vuông tại H và ΔMCK vuông tại K có
góc MBH=góc MCK
=>ΔMBH đồng dạng với ΔMCK
=>MB/MC=MH/MK
=>MB*MK=MC*MH