Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 7n-4 chia hết cho n+1
=> 7n-4=7n+7-11 chia hết cho n+1
Do 7n+7 chia hết cho n+1 nên 11 chia hết cho n+1
=> n+1 thuộc Ư(11)={1;11;-1;-11}
=> n thuộc{0;10;-2;-12}
Vậy n thuộc {0;10;-2;-12}
Câu b tương tự
Nếu n chẵn
=> Đặt n = 2k (k \(\inℕ\))
B = (3n + 17)(7n + 19)
= (3.2k + 17)(7.2k + 19)
= (6k + 17)(14k + 19) => B không chia hết cho 2
Nếu n lẻ
=> Đặt n = 2x + 1
=> B = (3n + 17)(7n + 19)
= [3(2k + 1) + 17].[7(2x +1) + 19]
= (6k + 20)(14k + 26)
= 2(3k + 10)(14k + 26) \(⋮\)2
=> B \(⋮\)2 <=> n lẻ
a) ( n\(^2\) + 7n - 8) chia hết cho n+3
Có : \(\frac{n^2+7n-8}{n+3}=n+4+\frac{-20}{n+3}\) là 1 số nguyên \(\Rightarrow-\frac{20}{n+3}\in Z\Rightarrow-20⋮n+3\Rightarrow n+3\inƯ\left(-20\right)=\) \(\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)
\(\Rightarrow n\in\left\{-23;-13;-8;-7;-5;-4;-2;0;1;2;7;17\right\}\)
b) (n\(^2\) + 5) chia hết cho n-2
\(\Rightarrow\frac{n^2+5}{n+2}=\frac{n.n+5}{n+2}=\frac{n\left(n+2\right)-2n+5}{n+2}=n-\frac{2n-5}{n+2}=n-\frac{2\left(n+2\right)-9}{n+2}\)
\(n-2+\frac{9}{n+2}\) \(;n-2\in Z\Rightarrow\frac{9}{n+2}\in Z\) \(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)=\left\{-1-3;-9;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-11;-1;1;7\right\}\)
Vì n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)3 (1)
n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)2 (2)
Từ (1),(2) mà ƯCLN(3,2) = 1\(\Rightarrow\)n (n+1)(n+2) \(⋮\)6\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)6; 7n (n+1)(n+2)\(⋮\)7 mà ƯCLN (6,7)=1
\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)42