K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

Gọi d=ƯCLN(3n+1;4n+1)

\(\Rightarrow\)3n+1 \(⋮\)d và 4n+1\(⋮\)d

\(\Rightarrow\)(3n+1).4\(⋮\)d và (4n+1).3\(⋮\)d

hay 12n+4\(⋮\)d và 12n+3 \(⋮\)d

\(\Rightarrow\)\([\)(12n+4)-(12n+3)\(]\)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)1=d

Vậy \(\frac{3n+1}{4n+1}\)là phân số tối giản.

Phần còn lại làm tương tự nha bạn.

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

12 tháng 8 2017

\(a,\frac{7n+3}{n}\)

\(\Rightarrow3⋮n\)Vì \(7n⋮n\)

\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)

\(b,\frac{12n-1}{4n+2}\)

\(=\frac{12n+6-7}{4n+2}\)

\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)

Để \(12n-1⋮4n+2\)

\(\Rightarrow7⋮4n+2\)

\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)

9 tháng 7 2015

\(2^{4x+1}+3\) Thế này hả bạn