Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a1+a2+a3+...+an = 0 thì số số có giá trị là 1 = số số có giá trị là -1 trong biểu thức a1+a2+a3+...+an hay số chữ số từ a1 đến an là một số chẵn.
Từ a1 đến a2002 có 2002 số là 1 số chẵn nên n có thể = 2002
a1a2+a2a3+...ana1=0 khi và chỉ chỉ khi n chia hết cho 4 mà 2002 ko cchia hết cho 4. Do đó n ko thể là 2002
có cá là 10000000000000000000000000000000000000000000000000000000000000000000000 %
xét n tích a1a2+a2a3+...+ana1, mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng =0 nên số tích có giá trị 1 bằng số tích có giá trị -1 và đều = n/2 => n chia hết cho 2
bây giờ ta chứng minh rằng số tích có giá trị bằng -1 cũng là số chẵn
thật vậy xét
A=(a1.a2)(a2.a3)...(an-1.an) (an.a-1)
ta thấy A =a1^2.a2^2....an^2 nên A>0 , chứng tỏ số tích có giá trị -1 cũng là số chẵn tức là n/2 là số chẵn , do đó n chia hết cho 4
tick nha
Bài 2)
Giả sử \(n=2018\) thì tồn tại đẳng thức \(a_1a_2+a_2a_3+...+a_na_1=0\)
Các số hạng có dạng \(a_ia_j\) trên đều chỉ có thể nhận giá trị \(1\) hoặc \(-1\). Có tất cả $2018$ số hạng như vậy, mà tổng của chúng lại bằng $0$ nên phải tồn tại \(\frac{2018}{2}=1009\) số hạng có giá trị $1$ và \(\frac{2018}{2}=1009\) số hạng có giá trị $-1$
\(\Rightarrow a_1a_2.a_2a_3.....a_na_1=(1)^{1009}(-1)^{1009}=-1\)
Mà \(a_1a_2a_2a_3....a_na_1=(a_1a_2....a_n)^2=1\)
Do đó điều giả sử là vô lý
Vậy \(n\) không thể bằng $2018$
TH tổng quát ta chứng minh được rằng \(n\) phải chia hết cho \(4\) .