Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (Nếu là tính M khi x = 1)
\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)
=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
\(\frac{4}{5}x+0=4,5\)
\(\frac{4}{5}x=4,5\)
\(x=4,5:\frac{4}{5}\)
\(x=5,625\)
vậy \(x=5,625\)
\(\frac{x}{3}=\frac{-5}{9}\)
\(\Rightarrow9x=-5.3\)
\(\Rightarrow9x=-15\)
\(\Rightarrow x=\frac{-5}{3}\)
vậy \(x=\frac{-5}{3}\)
\(\left|x+5\right|-\frac{1}{3}=\frac{2}{3}\)
\(\left|x+5\right|=\frac{2}{3}+\frac{1}{3}\)
\(\left|x+5\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x+5=1\\x+5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
vậy \(\orbr{\begin{cases}x=-4\\x=-6\end{cases}}\)
\(\left(x-2\right)^3=-125\)
\(\left(x-2\right)^3=\left(-5\right)^3\)
\(\Rightarrow x-2=-5\)
\(\Rightarrow x=-3\)
vậy \(x=-3\)
1) \(\left|x\right|=7\)
=> \(\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{7;-7\right\}.\)
2) \(\left|x\right|=0\)
=> \(x=0\)
Vậy \(x\in\left\{0\right\}.\)
5) \(\left|x\right|-1=\frac{2}{5}\)
=> \(\left|x\right|=\frac{2}{5}+1\)
=> \(\left|x\right|=\frac{7}{5}\)
=> \(\left[{}\begin{matrix}x=\frac{7}{5}\\x=-\frac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{7}{5};-\frac{7}{5}\right\}.\)
8) \(\left|x-17\right|=23\)
=> \(\left[{}\begin{matrix}x-17=23\\x-17=-23\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=23+17\\x=\left(-23\right)+17\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=40\\x=-6\end{matrix}\right.\)
Vậy \(x\in\left\{40;-6\right\}.\)
Mình chỉ làm thế thôi nhé, bạn đăng hơi nhiều mà với cả mấy câu này dễ mà bạn.
Chúc bạn học tốt!
1) |x|=7
=> [x=7x=−7 =>[x=7x=−7
Vậy x∈{7;−7}.x∈{7;−7}.
2) |x|=0
=> x=0x=0
Vậy x∈{0}.x∈{0}.
5) |x|−1=25
=> |x|=25+1 =>|x|=25+1
=> |x|=75|x|=75
=> [x=75x=−75[x=75x=−75
Vậy x∈{75;−75}.x∈{75;−75}.
8) |x−17|=23
=> [x−17=23x−17=−23[x−17=23x−17=−23 => [x=23+17x=(−23)+17[x=23+17x=(−23)+17
=> [x=40x=−6[x=40x=−6
Vậy x∈{40;−6}.
mình làm tới đây thôi dài quá:)
tick cho mình nha
\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)
Hệ số 3/5
\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)
Hệ số 4
Làm nốt b Quỳnh đag lm dở.
Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)
\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)
\(P\left(x\right)=x^2-2\)
Ta có : \(P\left(x\right)=x^2-2=0\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
a) Khi x = 1 thì \(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có \(\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|\) \(+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> x = \(\frac{1}{2}\)