Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng tương tự với câu trước đó thôi nhé Trương Tuấn Dũng ^^
Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)
\(m\ge-3\Leftrightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)
Vậy Max A = -1 <=> m = -3
Ta có : \(P=2m^2+30m+72=2\left(m+\frac{15}{2}\right)^2-\frac{81}{2}\)
Vì \(m\ge3\Leftrightarrow2\left(m+\frac{15}{2}\right)^2\ge\frac{441}{2}\Leftrightarrow P\ge180\)
Vậy Min \(P=180\Leftrightarrow m=3\)
Để M=a+b+c nhỏ nhất thì a,b,c phải nhỏ nhất
mà a\(\ge\)5 , b\(\ge\)6 , c\(\ge\)7
và a\(^2\)+b\(^2\)+c\(^2\)=125
\(\Rightarrow\)a,b,c lần lượt là 5 ,6,8 (tmđk)
GTNN của M là 19
\(a,A=4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy......
\(b,B=4-x^2+2x\)
\(=-\left(x^2-2x+1\right)+5\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy......
B2:
a) ta có: \(a^2+b^2-2ab\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
b) Ta có: \(a^2+b^2\ge-2ab\)
\(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)
\(\Rightarrowđpcm\)
Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)
Với \(m\ge-3\Rightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)
Dấu "=" xảy ra khi m = -3
Vậy Max A = -1 <=> m = -3
m=0 thì A=32