K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a ) Nếu M dương thì 3x + 2 = 1 hoặc 11

Nếu 3x + 2 = 1 thì không tồn tại x

Nếu 3x + 2 = 11 thì x = 3

b ) Nếu M âm thì 3x + 2 = -1 hoặc -11

Nếu 3x + 2 = -1 thì x = -1

Nếu 3x + 2 = -11 thì không tồn tại x

9 tháng 8 2017

điều kiện để M có nghĩa là: \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\) 

a) để M dương: 

\(\frac{11}{3x+2}>0\)

mà 11 là số nguyên dương => M > 0 khi và chỉ khi:  3x + 2 > 0 <=>  x > -2/3

b) làm tương tự nha bạn => x < -2/3

26 tháng 5 2020

a) A = \(\frac{3x+1}{x-1}\)

A là phân số <=> x - 1 \(\ne\)0 <=> x \(\ne\)1

b) A là số nguyên âm 

TH1: x - 1 > 0 => x > 1 => 3x + 1 > 0 

=> A là số nguyên dương => loại 

TH2: x - 1 < 0 => x < 1  mà x nguyên dương nên 

 x = 0 => 3x + 1 = 1 > 0 => A < 0 => Thỏa mãn

Vậy x = 0 thỏa mãn 

c) A nhận giá trị nguyên dương lớn nhất 

Ta có: \(A=\frac{3x+1}{x-1}=\frac{3x-3+4}{x-1}=3+\frac{4}{x-1}\)

A nguyên dương lớn nhất <=> \(\frac{4}{x-1}\) nguyên dương lớn nhất 

<=> \(x-1>0;x-1\inƯ\left(4\right);x-1\)bé nhất 

=> x - 1 = 1

=> x = 2  thỏa mãn

khi đó A = 7 thỏa mãn

Vậy x = 2 thì A lớn nhất bằng 7

22 tháng 5 2019

sẽ có k cho các bạn làm vừa nhanh vừa đúng ! giúp mk nha ! thank you !!! 

22 tháng 5 2019

a) Để M là số dương, có 2 TH:

\(TH1:7x-3>0;x+2>0\)

\(\Rightarrow x>\frac{3}{7};x>-2\)

\(TH2:7x-3< 0;x+2< 0\)

\(\Rightarrow x< \frac{3}{7};x< -2\)

b) Để M là số âm có 2 TH:

\(TH1:7x-3< 0;x+2>0\)

\(\Rightarrow x< \frac{3}{7};x>-2\)

\(\Rightarrow-2< x< \frac{3}{7}\)

\(TH2:7x-3>0;x+2< 0\)

\(\Rightarrow x>\frac{3}{7};x< -2\)(vô lí)

Vậy ta chỉ xét được 3 TH

26 tháng 6 2018

a) Để M thuộc Z <=> \(x+2\in B\left(3\right)=\left\{0;3;-3;6;-6;....\right\}\)

                         <=> x = B(3) - 2

b) Để N thuộc Z <=> 7 chia hết cho x-1

                        <=> \(x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Nếu x - 2= 1 thì x = 3

Nếu x - 2 = -1 thì x = 1

Nếu x - 2 = 7 thì x = 9

Nếu x - 2 = -7 thì x = -5

Vậy x = {-5;1;3;9}

a) Để M thuộc Z <=> x+2∈B(3)={0;3;−3;6;−6;....}

                         <=> x = B(3) - 2

b) Để N thuộc Z <=> 7 chia hết cho x-1

                        <=> x−1∈Ư(7)={1;7;−1;−7}

Nếu x - 2= 1 thì x = 3

Nếu x - 2 = -1 thì x = 1

Nếu x - 2 = 7 thì x = 9

Nếu x - 2 = -7 thì x = -5

Vậy x = {-5;1;3;9}

19 tháng 2 2017

Để \(A=\frac{2x+3}{3x-1}\) thuộc Z <=> 2x + 3 ⋮ 3x - 1

<=> 3(2x + 3) ⋮ 3x - 1

<=> 6x + 9 ⋮ 3x - 1

<=> 6x - 2 + 11 ⋮ 3x - 1

=> 11 ⋮ 3x - 1

Hay 3x - 1 ∈ Ư(11) = { ± 1; ± 11 }

Ta có bảng sau :

3x - 1- 11- 1   1     11   
x- 10/302/34

Vậy x = { - 10/3 ; 0; 2/3; 4 }

11 tháng 10 2021
Để tìm bội của n ( n khác 0 ) ta:....
22 tháng 3 2018

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)

\(\Rightarrow x+3-16⋮x+3\)

      \(x+3⋮x+3\)

\(\Rightarrow16⋮x+3\)

tự làm tiếp!

b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)

để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1

=> x = -2

vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)

2 tháng 3 2022

.....

22 tháng 3 2018

a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)

\(\Rightarrow10x+20-7⋮2x+4\)

\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)

\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)

      \(5\left(2x+4\right)⋮2x+4\)

\(\Rightarrow7⋮2x-4\)

tới đây bn liệt kê Ư(7) rồi làm tiếp.

b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)

để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất

=> 2x+4 là số nguyên dương nhỏ nhất

+ xét 2x+4 = 1

=> 2x = -3

=> x = -1,5 loại vì x thuộc Z

+ xét 2x+4=2

=> 2x = -2

=> x = -1 (tm)

vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)