K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: NP^2=MN^2+MP^2

=>ΔMNP vuông tại M

b: Xét ΔNMD vuông tại M và ΔNED vuông tại E có

ND chung

góc MND=góc END

=>ΔNMD=ΔNED

=>DM=DE

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp

9 tháng 12 2016

Ta có hình vẽ

M N P I

a/ Xét tam giác MNI và tam giác MPI có:

MN = MP (GT)

\(\widehat{NMI}\)=\(\widehat{PMI}\) (GT)

MI: cạnh chung

=> tam giác MNI = tam giác MPI (c.g.c)

=> NI = IP (2 cạnh tương ứng)

b/ Ta có: tam giác MNI = tam giác MPI (câu a)

=> \(\widehat{MIN}\)=\(\widehat{MIP}\) (2 góc tương ứng)

\(\widehat{MIN}\)+\(\widehat{MIP}\)=1800 (kề bù)

=> \(\widehat{MIN}\)=\(\widehat{MIP}\)=900

=> MI \(\perp\)NP (đpcm)

a) Xét \(\Delta\)ANM và \(\Delta\)ABM có :

  • MN = MB ( gt )
  • Góc AMN = góc AMB ( vì MA là phân giác )
  • MA : cạnh chung

\(\Rightarrow\)\(\Delta\)ANM = \(\Delta\)ABM ( c . g . c )

\(\Rightarrow\)AN = AB ( hai cạnh tương ứng )

b) Gọi giao điểm giữa NB và MA là I

     Xét \(\Delta\)INM và \(\Delta\)IBM có :

  • MN = MB ( gt )
  • Góc IMN = góc IMB ( vì MI là phân giác ) 
  • MI : cạnh chung

\(\Rightarrow\)\(\Delta\)INM = \(\Delta\)IBM ( c . g . c )

\(\Rightarrow\)Góc MIN = góc MIB ( hai góc tương ứng )

Mà góc MIN + góc MIB = 180 ( do kề bù )

nên góc MIN = góc MIB = 180 ÷ 2 = 90 độ hay NB vuông góc với MA .

18 tháng 12 2021

11 tháng 5 2017

a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)

 

a: Xét ΔMNQ vuông tại M và ΔHNQ vuông tại H có

NQ chung

\(\widehat{MNQ}=\widehat{HNQ}\)

Do đó: ΔMNQ=ΔHNQ

b: ta có: ΔMNQ=ΔHNQ

nên NM=NH

hay ΔNHM cân tại N 

mà \(\widehat{MNH}=60^0\)

nên ΔNHM đều