K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔPIM vuông tại I

=>IP^2+IM^2=MP^2

=>IM^2=10^2-6^2=64

=>IM=8(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên PI*PN=PM^2

=>PN=10^2/6=50/3(cm)

Xét ΔMNP vuông tại M có MI là đường cao

nên MI^2=IN*IP

=>IN=8^2/6=32/3(cm)

Xét ΔMNP vuông tại M có sin MNP=MP/PN

=10:50/3=3/5

=>góc MNP=37 độ

b: C=MN+NP+MP

=10+40/3+50/3

=10+90/3

=10+30

=40(cm)

c: Xét ΔIMP vuông tại I có IK là đường cao

nên IK*PM=IP*IM

=>IK*10=6*8=48

=>IK=4,8(cm)

19 tháng 9 2021

giúp mình với mọi người

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

a: cos N=1/2

=>góc N=60 độ

góc M=90-60=30 độ

Xét ΔMNP vuông tại P có sin M=PN/NM

=>PN/8=sin30=1/2

=>PN=4cm

=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)

b: Xét ΔNMP vuông tại P có sin N=0,6=3/5

=>PM/MN=3/5

=>5/MN=3/5

=>MN=25/3

PN=căn (25/3)^2-5^2=20/3(cm)

Xét ΔNMP vuông tại P có sinN=3/5

nên góc N\(\simeq37^0\)

=>\(\widehat{M}\simeq90^0-37^0=53^0\)

c: Xét ΔMNP vuông tại P có tan N=căn 3

=>PM/PN=căn 3

=>6/PN=căn 3

=>PN=2*căn 3(cm)

MN=căn (2*căn 3)^2+6^2=4*căn 3

Xét ΔMNP vuông tại P có tan N=căn 3

nên góc N=60 độ

=>góc M=30 độ

2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:

\(MD\cdot MN=MH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:

\(ME\cdot MP=MH^2\left(2\right)\)

Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)

29 tháng 9 2023

Xét `\triangle MNP` vuông tại `M` có `MI` là đường cao

  `@MN=\sqrt{MI^2+NI^2}=\sqrt{881}`.

  `@NP=[MN^2]/[NI]=35,24`.

  `@MP=\sqrt{NP^2-MN^2}=[16\sqrt{881}]/25`.

  `@IP=\sqrt{MP^2-MI^2}=10,24`.