K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

Ta có: \(\sqrt{6}-\frac{m}{n}>0\Leftrightarrow\sqrt{6}n-m>0\Leftrightarrow6n^2>m^2\Leftrightarrow6n^2\ge m^2+1\) (Do m, n là các số tự nhiên).

Mặt khác \(m^2+1\equiv1;2\left(mod3\right)\Rightarrow m^2+1⋮̸3\).

\(6n^2⋮3\) nên \(6n^2\ge m^2+1\).

Bất đẳng thức cần chứng minh tương đương với:

\(\sqrt{6}n>\frac{1}{2m}+m\Leftrightarrow6n^2>\left(\frac{1}{2m}+m\right)^2\).

Ta chỉ cần chứng minh:

\(\left(\frac{1}{2m}+m\right)^2< m^2+2\Leftrightarrow\frac{1}{4m^2}< 1\Leftrightarrow4m^2>1\) (luôn đúng với mọi m \(\in\) N*).

Vậy ta có đpcm.

5 tháng 9 2020

Dòng thứ 4 là \(6n^2\ge m^2+2\) chứ không phải là \(6n^2\ge m^2+1\). Mình ghi nhầm :(

\(\sqrt{3}>\frac{m}{n}\Rightarrow3>\frac{m^2}{n^2}\Rightarrow3n^2>m^2\Rightarrow3n^2\ge m^2+1\)

với 3n2=m2+1=>m2+1 chia hết cho 3

=>m2 chia 3 dư 2(vô lí)

\(\Rightarrow3n^2\ge m^2+2\)

lại có:\(\left(m+\frac{1}{2m}\right)^2=m^2+1+\frac{1}{4m^2}< m^2+2\)

\(\Rightarrow\left(m+\frac{1}{2m}\right)^2< 3n^2\Rightarrow m+\frac{1}{2m}< \sqrt{3}n\)

\(\Rightarrow\frac{m}{n}+\frac{1}{2mn}< \sqrt{3}\left(Q.E.D\right)\)

24 tháng 8 2019

\(A=\frac{1}{11.m.n}.m.n.\sqrt{\frac{121.m^2}{n^6}}=\frac{1}{11}.\frac{11.m}{n^3}=\frac{m}{n^3}\)

\(B=2\left(m+n\right).\sqrt{\frac{1}{m^2+2mn+n^2}}=2\left(m+n\right).\sqrt{\frac{1}{\left(m+n\right)^2}}=2\)

Đặt \(d=\left(m,n\right)\)

Ta có :\(\hept{\begin{cases}m=ad\\n=bd\end{cases}}\)với \(\left(a,b\right)=1\)

Lúc đó

\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{ad+1}{bd}+\frac{bd+1}{ad}=\frac{\left(a^2+b^2\right)d+a+b}{abd}\)là số nguyên

Suy ra \(a+b⋮d\Rightarrow d\le a+b\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)

Vậy \(\left(m,n\right)\le\sqrt{m+n}\)(đpcm)

9 tháng 10 2018

a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)

\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(M=\frac{3a+3}{\sqrt{a}}\)

Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)

Vậy \(M>4.\)

b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)

Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Áp dụng bất đẳng thức Cosi cho hai số dương, ta có  \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)

 \(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\)   (Vô lý)

Vậy không tồn tại giá trị của a để N nguyên.

chị quản lí làm sai rùi

26 tháng 11 2020

\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)

Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)