Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\triangle \varphi = \frac{\pi}{2}.\)
Số điểm dao động vân cực đại trên đoạn thẳng nối hai nguồn là:
\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (k+\frac{\triangle\varphi)}{2 \pi}\lambda\leq AB \\ \Rightarrow -32 \leq (k+ \frac{1}{4}) \lambda \leq 32 \Rightarrow -3,45 \leq k \leq 2,95 \\ \Rightarrow k = -3,-2,-1,0,1,2.\)
Có 6 vân cực đại.
Số điểm dao động vân cực tiểu trên đoạn thẳng nối hai nguồn là:
\(-AB\leq d_2-d_1\leq AB \Rightarrow -AB\leq (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2}\leq AB \\ \Rightarrow -32 \leq (2k+1+\frac{1}{2})5 \leq 32 \\ \Rightarrow -3,95 \leq k \leq 2,45. \\ \Rightarrow k = -3,-2,-1,0,1,2.\)
Có 6 vân cực tiểu.
\(\lambda = v/f = 2cm.\)
Số điểm dao động cực đại thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -10 < k\lambda < 10. \\ \Rightarrow -5 < k < 5.\\ \Rightarrow k = -4,-3,-2,-1,0,1,2,3,4.\)
Có 9 điểm dao động với biên độ cực đại.
Số điểm dao động cực tiểu thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -10 < (2k+1)\lambda/2 < 10 \\ \Rightarrow -5,5 < k < 4,5 \\ \Rightarrow k = -5,-4,-3,-2,-1,0,1,2,3,4.\)
Có 10 điểm dao động với biên độ cực tiểu.
\(\lambda = v/f = 5cm.\)
\(\triangle \varphi = \frac{\pi}{2}.\)
Số cực đại trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -12 < (k+\frac{1}{4})\lambda < 12. \\ \Rightarrow -2,65 < k < 2,15 \\ \Rightarrow k = -2,-1,0,1,2.\)
Có 5 cực đại.
Số cực tiểu trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -12 < (2k +1 + 1/2)\lambda/2 < 12 \\ \Rightarrow -3,15 < k < 1,65 \\ \Rightarrow k = -3,-2,-1,0,1.\)
Có 5 cực tiểu.
bạn tìm được T = 0,4 (s)
Vật cách vị trí thấp nhất 2 cm tức là cách biên A 2cm (chọn chiều dương hướng xuống) => x = 8 - 2 = 6 (cm)
v=w. = = 83,11 (cm/s)
Gọi \(l_0\) là chiều dài tự nhiên của lò xo, \(\Delta l_0\) là độ dãn ở VTCB, \(A\) là biên độ của lò xo.
- Chiều dài của lò xo khi vật ở vị trí cân bằng: \(l_{cb}=l_0+\Delta l_0\)
- Chiều dài cực đại: \(l_{max}=l_0+\Delta l_0+A\)
- Chiều dài cực tiểu: \(l_{min}=l_0+\Delta l_0-A\)
@Nhi Chu:
Khi \(A < \Delta l_0\)
Độ giãn cực đại: \(\Delta l_0 +A\)
Độ nén cực đại: \(\Delta l_0 - A\)