Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...++\frac{1}{299}+\frac{1}{300}\right)\)
\(=\left(\frac{1}{200}.100\right)+\left(\frac{1}{300}.100\right)\)
\(=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)
\(Vậy\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\RightarrowĐPCM\)
\(\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}+-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{10}{99}+\frac{11}{199}-\frac{12}{299}\right)\times0\)
\(=0\)
Gọi ước chung của 4n+1 và 6n+1 là số tự nhiên x.Ta có :
4n+1 và 6n+1 thuộc B(x) => 6(4n+1); 4(6n+1) hay 24n+6;24n+4 thuộc B(x)
=> (24n+6) - (24n+4) = 2 thuộc B(x) => x = 1;2 mà 4n;6n chẵn nên 4n+1;6n+1 lẻ (không thuộc B(2) )
=> x khác 2 và bằng 1 => 4n+1;6n+1 là 2 số nguyên tố cùng nhau
=> 4n+1 / 6n+1 là phân số tối giản (n thuộc N)
abcd \(⋮\) 101
<=> abcd = 101k (k > 10 ; k \(\in\)N)
<=> ab = cd
=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)
* Chú thích (ko ghi vào)
\(⋮\) là dấu chia hết
đcpm là điều phải chứng minh
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Biểu thức có 200 số hạng
Ta có: \(\frac{1}{101}>\frac{1}{300};\frac{1}{102}>\frac{1}{300};...;\frac{1}{299}>\frac{1}{300};\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\)
Vậy....
Ta có : \(\frac{1}{101}>\frac{1}{300}\)
\(\frac{1}{102}>\frac{1}{300}\)
..................
\(\frac{1}{300}=\frac{1}{300}\)
Do đó \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200\cdot\frac{1}{300}=\frac{2}{3}\Rightarrowđpcm\)
1, a,b ko chia hết cho 3 nhưng có cùng số dư khi chia cho 3
=> a,b cùng chia 3 dư 1 hoặc 2
sau đó xét 2 TH;
=> ab chia 3 dư 1 => ab-1 là bội của 3 (ĐPCM)
bài 2: Các số đó là :
-2012 , -2011 , -2010 , ....., 0, 1 , ..., 2012
Tổng cá số đó là 0
đúng nhé
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Ta có từ 1/101 đến 1/102 có 200 số.Vậy ta nhân 1/300 với 200 : 1/300 x 200 = 200/300 = 2/3
Vì 200 số 1/300 cộng lại không thể lớn hơn 1/300 số với 199 số khác lớn hơn 1/300 nên :
1/101 + 1/102 + ... +1/299 + 1/300 > 1/300 x 200 = 200/300 = 2/3 ( Điều phải chứng minh )