K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

6*9=54

Cho mình hỏi 2 câu :

1/Bạn học lớp 5 lên lớp 6 hoặc 6 lên 7 phải không?

2/Câu hỏi mà bạn đặt ra đâu phải dành cho lớp 6 mới làm được?Lớp 2 cũng làm được mà

8 tháng 6 2017

6 x 9 = 54

11 tháng 2 2017

Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé

11 tháng 2 2017

1)

Xét 2004 số đề kết thúc là 4 chữ số 2002 :

20022002; 200220022002 ; ...;  20022002...2002

                                               | 2005 cụm 2002 |

Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.

Gọi 2 số đó là 20022002...2002; 200220022002...2002

                     | n cụm 2002 |           |m cụm 2002|      \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.

Suy ra : 

                     200220022002...2002 - 20022002...2002 chia hết cho 2003

                        | m cụm 2002 |            | n cụm 2002 |

= 20022002...200220020000000...0000  chia hết cho 2003

   | m - n cụm 2002 |     | 4n chữ số 0 |

\(\Rightarrow200220022002...2002.10^{4n}\)  chia hết cho 2003

        | m - n cụm 2002 | 

Mà (10;2003) = 1 nên (104n;2003)=1

Suy ra 200220022002...2002 chia hết cho 2003

             | m - n cụm 2002 | 

Số này kết thúc là ...2002

22 tháng 12 2021

chắc bài này hong có ai bt làm hòi , mik mong các bạn sẽ bt 

29 tháng 9 2018

a , Điểm O nằm giữa một điểm bất kì khác O của tia Ox và một điểm bất kì khác O của tia Oy.

Vẽ hình:

O B A x y

b , không còn cách nào khác kết quả trên 

22 tháng 8 2020

mn vào đề 6 nha

mình vào rồi,thấy 1 đề là có 4 hoặc 5 bài

30 tháng 9 2016

1251chia hết cho 3 ,chia hết cho 9

5316 chia hết cho 3,không chia hết cho9

suy ra 1251+5316 chia hết cho3 không chia hết cho 9

30 tháng 9 2016

a ) 1251+5316=6567 vi tong cua cso 6567=24 nen chia het cho 3 va ko chia he cho 9

b ) 5436 - 1324= 4112 vi tong cua so 4112 = 8 nen so do ko chia het cho 3 va cho 9

c )  1  2 * 3  * 4* 5 *6  +27=747 vi tong cua so 747 = 18 nen so do chia het cho ca 3 va 7

3 tháng 12 2016

khó quá

8 tháng 6 2017

Các số nguyên tố từ 2 đến 100 

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 2

Tính chất của số nguyên tố

Kí hiệu là ''b / a'' nghĩa là b là ước của a, kí hiệu a \(⋮\) b nghĩa là a chia hết cho b

1. Ước tự nhiên khác 1 nhỏ nhất của 1 số tự nhiên là nguyên tố

Chứng minh; Giả sử d / a nhỏ nhất; d \(\ne\) 1.

Nếu d không nguyên tố \(\Rightarrow\) d \(=\) d1. d2 ; d1, d2 lớn hơn 1 

\(\Rightarrow\) d1 / a với d1 lớn hơn d ; mâu thuẫn với d nhỏ nhất. Vậy d là nguyên tố 

2. Cho p là nguyên số; a \(\in\) N; a \(\ne\) 0. Khi đó 

a,b \(=\) p \(\Leftrightarrow\) a \(⋮\) p 

a,b \(=\) 1\(=\) a p

3. Nếu tích của nhiều số chia hết cho một số nguyên tố p thì có ít nhất một thừa số chia hết cho p 

    \(II\) ai \(⋮\) \(\Rightarrow\) \(\exists\)ai \(⋮\)p

4. Ước số dương bé nhất khác 1 của số nguyên tố không vượt qua \(\sqrt{a}\) 

5. 2 số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất 

6. Tập hợp các số nguyên là vô hạn. Tương đương với viếc ko có nguyên số lớn nhất

    Chứng minh; Giả sử có hữu hạn số nguyên tố; p1  bé hơn p2 bé hơn .... pn

Nhật xét a \(=\) p1. p2 .... pn + 1 

Ta có; a lớn hơn 1 và a 1 pi; ''i\(=\) a là hợp số, a có nguyên tố pi, hay aMpi và pi M pi. 1M pi ; Mâu thuẫn 

Vậy tập hợp các số nguyên tố là vô hạn 

Chúc bạn học giỏi

Giải thích giùm mik nha mấy bạn!

15 tháng 4 2019

Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10

Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:

(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)

⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10

(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00

⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)

Sm=a1+a2+...+amSm=a1+a2+...+am

Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an

⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0

⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10

Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)

 Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10
(đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng
giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)