K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

Giả sử : \(n-1⋮d\)và  \(n-2⋮d\)

 \(\Rightarrow\left(n-1\right)-\left(n-2\right)⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\)

\(\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n-1}{n-2}\) là phân số tối giản

14 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

15 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

16 tháng 8 2017

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow n^2+1⋮d\)

\(n^3+2n⋮d\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)

\(\Leftrightarrow n⋮d\)

\(n^2+1⋮d\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản với mọi n

16 tháng 8 2017

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow n^2+1⋮d\)

Mà n3 + 2n \(⋮\) d

\(\Rightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)

\(\Rightarrow n⋮d\)

Mà n2 + 1 \(⋮\) d

\(\Rightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N;1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\)

Vậy phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản \(\forall n\in N\) => đpcm

17 tháng 11 2015

Dặt d =(A=15n2+8n+6;B=30n2+21n+13)

=> A;B cùng chia hết cho d

B-2A=30n2+21n+13- 30n2-16n -12 =5n+1 chia hết cho d

=> d =5n+1 hoặc d =1

+d =5n+1; nhưng A không chia hết ch o 5n+1  loại

Vậy d =1

=> Phân thức A/B là tối giản.

17 tháng 11 2015

mk cũng muốn giúp bn lắm nhưng mk mới học lớp 6

2 tháng 8 2015

Gọi ƯCLN(2n+1;2n^2-1)=d

Ta có: 2n+1 chia hết cho d; 2n2-1 chia hết cho d

=>n(2n+1) chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2 chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2-2n^2-1 chia hết cho d

hay 1 chia hết cho d hay d=1

nên ƯCLN(2n+1;2n^2-1)=1

Vậy A là ps tối giản với mọi n