K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Từ m-n=3=>m=n+3

Ta có: \(\frac{m-8}{n-3}=\frac{\left(n+3\right)-8}{n-3}=\frac{n-5}{n-5}=1\)  (1)

\(\frac{4m-n}{3m+3}=\frac{4.\left(n+3\right)-n}{3.\left(n+3\right)+3}=\frac{4n+12-n}{3n+9+3}=\frac{\left(4n-n\right)+12}{3n+12}=\frac{3n+12}{3n+12}=1\)   (2)

Từ (1) và (2) \(\Rightarrow A=1-1=0\)

Vậy A=0

11 tháng 6 2015

 m - n = 3 => m = 3+ n 

Thay vào B ta có

\(B=\frac{3+n-8}{n-5}+\frac{4\left(3+n\right)-n}{3\left(3+n\right)+3}=\frac{n-5}{n-5}+\frac{12+4n-n}{9+3n+3}=1+\frac{3n+12}{3n+12}=2\)

11 tháng 6 2015

bạn xem tai đây nhé: http://olm.vn/hoi-dap/question/101176.html

11 tháng 6 2015

\(m-n=3\Leftrightarrow m=n+3\)

Thay vào B ta được :

\(B=\frac{n+3-8}{n-5}=\frac{4\left(n+3\right)-n}{3\left(n+3\right)+3}=\frac{n-5}{n-5}+\frac{3n+12}{3n+12}=1+1=2\)

24 tháng 3 2017

có m=3 +n -> thay m thành 3+n -> làm như bình thường ->ra

27 tháng 7 2016

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(=>\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(=>\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

\(=>m=5\)

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(=>\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(=>\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

\(=>n=3\)

27 tháng 7 2016

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=> m =5

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Rightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=> n = 3

26 tháng 6 2015

a, ( 1/2 ) ^ m = ( 1/2) ^5 

=> m = 5

b, ( 7/5) ^n = 343 / 125

=> ( 7/5)^n = (7/5) ^ 3

=> n = 3 

Đúng cho tui nha

26 tháng 6 2015

\(a.\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

=>m=5

\(b.\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

=>n=3