Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bậy rồi nha!
4 lớn hơn 3 mà:
42 - 1 hay 42-1 (nếu cái trước không pphair ý bạn) cũng đâu chia hết cho 24 đâu.
* CM m^2-1\(⋮\)3
vì 1 SCP :3 dư 0 hoặc 1 mà m là SNT >3=>m^2:3 dư 1=>m^2-1\(⋮\)3 (1)
*CM m^2-1\(⋮\)8
vì 1 SCP :8 dư 0,1,4 mà p là SNT >3 => m^2:8 dư 1 => m^2-1\(⋮\)8(2)
từ (1) và (2) và (3,8)=1=> m^2-1\(⋮\)24=>ĐPCM
do m ;m+k ; m+2k là số nguyên tố >3
=> m;m+k;m+2k lẻ
=> 2m+k chẵn =>⋮⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2(p∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)
với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số
với k=3a+2 => m+k= 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k⋮6
Do m , m + k , m+2k là số nguyên tố > 3
=> m , m+k , m+2k lẻ
=> 2m+k chẵn => k chia hết cho 2
Mặt khác m là số nguyên tố > 3
=> m có dạng 3p+1 và 3p +2 ( p thuộc N* )
xét m = 3p + 1
Ta lại có k có dạng 3a ; 3a+1 ; 3a+2 ( a thuộc N* )
Với k = 3a+1 ta có 3p +1+2 ( 3a +1) = 3(p+1+3a)loại vì m+2k là hợp số
Với k = 3a+ 2 => m+k = 3(p+a+1) loại
=> k=3a
Tương tự vs 3p +2
=> k=3a
=> k chia hết cho 3
Mà (3;2) = 1
Nên => k chia hết cho 6
a) Ta có : M = 3 + 32 + 33 + ... + 3100
=> M = (3 + 32) + (33 + 34) + ... + (399 + 3100)
=> M = 12 + 32(3 + 32) + ... + 398(3 + 32)
=> M = 12 + 32.12 + ... + 398.12
=> M = 12(1 + 32 + ... + 398) \(⋮\)12
Do 12 = 3 . 4 \(⋮\)4 => M \(⋮\)4
b) Ta có: 2m + 3 = 3
=> 2m = 3 - 3
=> 2m = 0
=> m = 0 : 2
=> m = 0
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
Ta có:
a>3 a ko chia hết cho 3
=> a=3k+1 hoặc 3k+2
Xét a=3k+1
(3k+1)2=3k+1.3k+1=9.(k2)+6k-1
=> th 3k+1 thì a2-1 chia hết cho 3
Nếu m2-1 chia hết cho 8
thì m2-1=8k
=>m2=8k+1
=> m2 có tận cùng = 1;3;5;7;9
=> m2 có tận cùng =1;5;9
=> m có tận cùng =1;3;5;7;9
Th: a=3k+2
a2+1=3k+2.3k+2+1
=9.(k2)+6k+4+6k-1
=> a=3k+2
thỏa mãn
=> m+1 thỏa mãn
nhưng th
m=4
=> với m có tc =1;3;5;9;7 thì số đó chia hết cho 24 với m tc 9 mà m khác 9
thì số đó chia hết cho 9
mk ko thể cm đc vì gs n=4 => 15 ko chia hết cho 24