Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi b là thương của a và 18 ta có
a:b =18 (dư 6)
=>a:b=3.6 (dư 6)
=> a=b.3.6+6
b.3.6 chia hết cho 6
6 chia hết cho 6
=> b.3.6+6 chia hết cho 6
a = 12 . q + 8
a) 2 x 4 = 8 a chia het cho 4
b) ko có số nào nhân 6 bằng 8 nên a ko chia hết cho 6
Gọi 4 số lẻ liên tiếp là 2k+1, 2k+3, 2k+5, 2k+7 ( k thuộc tập số nguyên)
Ta có: 2k+1+2k+3+2k+5+2k+7=8k+16
=8(k+2) chia hết cho 8 vì 8 chia hết cho 8 => đpcm
Gọi 4 số chẵn liên tiếp là 2k, 2k+2, 2k+4, 2k+6
Ta có: 2k+2k+2+2k+4+2k+6=8k+12 không chia hết cho 8 vì 12 không chia hết cho 8 => đpcm
Vì 8k chi hết cho 8 ( do 8 chia hết cho 8) nên 12 chia 8 dư bao nhiêu thì tổng chia 8 dư bấy nhiêu
Ta có 12 chia 8 dư 4 nên tổng 4 số chẵn liên tiếp cũng sẽ chia 8 dư 4.
Ta đã biết 1 số khi chia cho 3 chỉ có thể dư 0; 1 hoặc 2
Mà 2 số đề bài cho không chia hết cho 3 và chia 3 có số dư khác nhau
=> trong 2 số đó có 1 số chia 3 dư 1; 1 số chia 3 dư 2
Gọi 2 số đó là: 3.a + 1 và 3.b + 2
Ta có: (3.a + 1) + (3.b + 2)
= 3.a + 1 + 3.b + 2
= 3.a + 3.b + 3
= 3.(a + b + 1) chia hết cho 3
Chứng tỏ ...
Gọi thương trong phép chia cho 36 là : \(k\left(k\in N\right)\)
Theo đề ra , ta có : \(a=36k+12\left(k\in N\right)\)
Vì : \(36⋮4\Rightarrow36k⋮4\left(k\in N\right)\) ; \(12⋮4\)
\(\Rightarrow36k+24⋮4\left(k\in N\right)\)
Vì : \(36⋮9\Rightarrow36k⋮9\left(k\in N\right)\) ; \(24⋮̸\) 9
\(\Rightarrow36k+24⋮̸\) 9 \(\left(k\in N\right)\)
Vậy : \(a⋮4\) ; \(a⋮̸\) 9
a chia cho 36 dư 12 => a = 36k + 12
Ta có: 36 \(⋮\)4 => 36k \(⋮\)4
12 \(⋮\)4
=> a \(⋮\)4
Ta có: 36 \(⋮\)9 => 36k \(⋮\)9
12 \(⋮̸\)9
=> a \(⋮̸\)9
ta có A=75(4^2013+4^2012+...+4^2+4+1)+25
=75(4^2013+4^2012+...+4^2+4)+75+25
=75[4(4^2012+...+4^2+4+1)
=300(4^2012+...+4^2+4+1)+100
=100[3(4^2012+...+4^2+4+1)+1] CHIA HẾT CHO 100(Đ.P.C.M)