K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

Ta có: M=1+3+3^2+...+3^13

=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^11+3^12+3^13)

=13+3^3.(1+3+3^2)+..+3^11.(1+3+3^2)

=13+3^3.13+...+3^11.13

=13.(1+3^3+..+3^11)  ( chia het cho 13)

Vay M chia het cho 13

8 tháng 12 2015

- Xét: Tổng B có 101 số hạng, nhóm 4 số vào 1 nhóm, ta đc 25 nhóm và thừa 1 số hạng

=> B = 1 + (3+32+33+34) + (35+36+37+38) +.....+ (397+398+399+3100)

=> B = 1 + 3(1+3+32+33) + 35(1+3+32+33) +.....+ 397(1+3+32+33)

=> B = 1 + 40.(3+35+...+397)

Có 1 chia 40 dư 1

40.(3+35+...+397)

 chia hết cho 40

=> 1 + 40.(3+35+...+397) chia 40 dư 1

=> B chia 40 dư 1

8 tháng 12 2015

A = 4 + 42 + 43 + ... + 424

= (4 + 42) + (43 + 44) + ... + (423 + 424)

= 4 (1 + 4) + 43 (1 + 4) + ... + 423 (1 + 4)

= 4 . 5 + 43 . 5 + ... + 423 . 5

= 20 + 20 . 42 + ... + 20 . 422

= 20 (1 + 42 + ... + 422) chia hết cho 20

ĐPCM

 

 

25 tháng 7 2018

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

25 tháng 7 2018

chả hiểu j

20 tháng 12 2018

Ahihi

Nhón ba số đầu với nhau cứ thế cho đến hết

(1+3+3^2)+...+(3^2016+3^2017+3^2018)

=13+...+3^2016(1+3+3^2)

=13+...+3^2016x13

=13(1+...+3^2016)

vì 13 chia hết cho 13 =>13 nhân (1+...+3^2016) chia hết cho 13

Chuẩn không nhớ

20 tháng 12 2018

\(S=1+3^1+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}.\)

\(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2016}\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{2016}.13\)

\(S=13\left(3^3+...+3^{2016}\right)⋮13\left(đpcm\right)\)

Hok tốt

11 tháng 10 2015

a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)

C=13+.......+3^9.13

C=13(1+.....+3^9) chia hết cho 13

Vậy C chia hết cho 13

b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)

C=40+..........+3^8.40

C=40(1+....+3^8) chia hết cho 40

Vậy C chia hết cho 40

11 tháng 10 2015

a) A = (1+3+32) + (33 + 34 + 35) + ... + (39 + 310 + 311)

A = 13 + 33.(1+3+32) + ... + 39.(1+3+32)

A = 13 + 33.13 + ... + 39.13

A = 13.(1+33+...+39) chia hết cho 13 (đpcm)


A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)

A = 40 + 34.(1 + 3 + 32 + 33) + 38.(1 + 3 + 32 + 33)

A = 40 + 34.40 + 38.40

A = 40.(1 + 34 + 38) chia hết cho 40 (đpcm)

5 tháng 10 2017

A = 1 + 3 + 32  + 33  + ... + 311 C = ( 1 + 3 + 32  ) + ( 33  + 34  + 35  ) + ... + ( 39  + 310  + 311 ) C = 1 ( 1 + 3 + 32  ) + 33  ( 1 + 3 + 32  ) + ... + 39  ( 1 + 3 + 32  ) C = 1 . 13 + 33  . 13 + ... + 39  . 13 C = 13 ( 1 + 33  + ... + 39  ) chia hết cho 13 => C chia hết cho 13 ( đpcm ) 

21 tháng 10 2015

M = 2 + 22 + 23 + ... + 220

M = ( 2 + 22 + 23 + 24 ) + ... + ( 217 + 218 + 219 + 220 )

M = 5 ( 1 + 4 + 10 ) + ... + 5 ( 1 + 4 + 10 )

M chia hết cho 5 ( đpcm )