K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)

\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Ta có :

\(\hept{\begin{cases}\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\\\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\\\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\end{cases}}\)

\(\Rightarrow P>Q\)

16 tháng 11 2014

2013+2012^2(1+2012)+.......................+2011^6(1+2012) TA THẤY MOI SO DAU CO THUA SO 2012 +1 =2013 VAY NÓ CHIA HET CHO 13

16 tháng 11 2014

1+2011=2012

VẦY TA CÓ 2011+1 + 2011^2+2011^2 X2011  +.......................2011^6 +2011^6 X 2011 SUUY RA 2012+2011^2(1+2011)+..........................+2016^6(1+2011)=(2011+1) X ( 2011^2+...............+2016^6) =2012(2011^2+...............+2016^6) TA THẤY 2012 CHIA HẾT CHO 2012 VẬY TỔNG NÀY CHIA HẾT CHO 2012

8 tháng 5 2017

ta thấy: 10 chia 3 dư 1 => 10^x cũng chia 3 dư 1 nên bằng 3k+1

mà ở đây 10^2011+10^2013+10^2013+10^2014 có 4 lần 3k + 1 nên bằng 12k + 1 

còn 16 chia 3 dư 1 

=> A chia 3 dư 2

K có số chính phương nào ở dạng 3k+2, mà chỉ ở dạng 3k, 3k+1 nên A k là số chính phương

CHÚC PẠN HỌC GIỎI

9 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

10 tháng 4 2015

a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)

A có tổng các chữ số là 9 nên chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24

b) A có chữ số tận cùng là 8 nên không là số chính phương

 

31 tháng 7 2020

1. Ta có :

\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)

\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)

\(2^{20}-3< 2^{22}-3\)

\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)

\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)

\(\Leftrightarrow4A< 4B\)

\(\Leftrightarrow A< B\)

Vậy...

b/ Tương tự