K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

*Không vẽ được hình, bạn thông cảm*

Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)

Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)

Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)

Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)

22 tháng 9 2016

ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)

=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)

(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả  định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy  là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)

=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)

=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)

=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)

Áp dụng BĐT coosshi cho 2 số dương ,ta có:

\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)

vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)

7 tháng 1 2020

dell bt

10 tháng 1 2020

có cần vậy không, để dành nik để đi phá nx chứ coi chừng bị khoá ấy

22 tháng 9 2016

\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)

\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)

\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!

22 tháng 9 2016

tôi không biết

6 tháng 1 2019

bn tự kẻ hình nhé:

a) Xét  tgiac IAB và tgiac ICA có:

góc I:  chung

góc IAB = góc ICA  (chắn cung AB)

suy ra: tgiac IAB = tgiac ICA  (g.g)

=> IA/IC  =  IB/IA  =  AB/AC

=>  IA/IC . IB/IA = AB/AC . AB/AC

=> IB/IC = AB^2/AC^2   (đpcm)

b) Theo câu a) ta có:

IA/IC = IB/IA = AB/AC = 5/7 

Đặt:  IA = 5k  thì:  IC = 7k;   IB = 25/7 k

Ta có:  IC - IB = BC

=>  \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\) 

=>   \(24=\frac{24}{7}k\)

=>  \(k=7\)

Vậy  IA = 5.7 = 35

        IC = 7.7 = 49

13 tháng 4 2020

100-89=?