Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
a) Với \(m=-1\), hpt \(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\x-y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
Vậy...
b) \(\left\{{}\begin{matrix}x+y=3\\-mx-y=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=x-3\\-mx+x-3=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(-m+1\right)=2m+3\\y=-x+3\end{matrix}\right.\)
+) Xét \(m=1\Leftrightarrow\left(x;y\right)\in\varnothing\)
+) Xét \(m\ne1\):
hpt \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-2m-3}{m-1}\\y=\frac{2m+3}{m-1}+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-2m-3}{m-1}\\y=\frac{5m}{m-1}\end{matrix}\right.\)
Để \(y\) nguyên thì \(5m⋮\left(m-1\right)\)
\(\Leftrightarrow5\left(m-1\right)+5⋮\left(m-1\right)\)
\(\Leftrightarrow5⋮\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow m\in\left\{2;0;6;-4\right\}\)
Thử lại thay vào \(x\) rồi kết luận.
b:
Sửa đê; x^2+y^2=1
=>3x=m-my và x(m-1)+2y=m-1
=>x=-1/3my+1/3m và (m-1)(-1/3my+1/3m)+2y=m-1
=>x=-1/3my+1/3m và \(y\cdot\dfrac{-1}{3}m^2+\dfrac{1}{3}m^2+\dfrac{1}{3}my-\dfrac{1}{3}m+2y=m-1\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}my+\dfrac{1}{3}m\\y\left(-\dfrac{1}{3}m^2+\dfrac{1}{3}m+2\right)=m-1-\dfrac{1}{3}m^2+\dfrac{1}{3}m=-\dfrac{1}{3}m^2+\dfrac{4}{3}m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\left(-m^2+m+6\right)=-m^2+4m-3\\x=-\dfrac{1}{3}my+\dfrac{1}{3}m\end{matrix}\right.\)
=>y*(m-3)(m-2)=(m-3)(m-1) và x=-1/3my+1/3m
Nếu m=3 thì hệ có vô số nghiệm
nếu m=2 thì hệ vô nghiệm
Nếu m<>3; m<>2 thì hệ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m-2}\\x=-\dfrac{1}{3}\cdot\dfrac{m^2-m}{m-2}+\dfrac{m}{3}=\dfrac{-m^2+m}{3m-6}+\dfrac{m}{3}=\dfrac{-m^2+m+m^2-2m}{3\left(m-2\right)}=\dfrac{-m}{3\left(m-2\right)}\end{matrix}\right.\)
x^2+y^2=1
=>(m-1/m-2)^2++(-m/3m-6)^2=1
=>\(\dfrac{\left(m-1\right)^2}{\left(m-2\right)^2}+\dfrac{m^2}{9\left(m-2\right)^2}=1\)
=>9(m-1)^2+m^2=9(m-2)^2
=>9m^2-18m+9+m^2=9m^2-36m+36
=>m^2-18m+9=-36m+36
=>m^2+18m-27=0
=>\(m=-9\pm6\sqrt{3}\)
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........