K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

a) Tính MN:

Xét tam giác ABC ta có:

M là trung điểm AC (gt); N là trung điểm BC (gt)

=>MN là đường trung bình của tam giác ABC

=> MN // BC; MN=BC/2

=>MN= 12/2=6

b) Tính diện tích tam giác ABC:

Xét tam giác ABC vuông tại A ta có:

AB2+AC2=BC2 (định lý Pytagor thuận)

122+AC2=202

144+AC2=400

AC2=400-144=256

AC=16

Diện tích tam giác ABC là:

S tam giác ABC= AB*AC=12*16=192

c) CMR: tứ giác ABCD là hình bình hành:

Xét tứ giác ABCD ta có:

M là trung điểm của AC (gt)

M là trung điểm của BD (gt)

AC cắt BD tại M

=> tứ giác ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

d) CM: tứ giác ABEC là hình chữ nhật:

Ta có :

CD=AB ( ABCD là hình bình hành)

CD=CE (gt)

=>CE=AB

Xét tứ giác ABEC ta có:

AB=CE (cmt)

AB//CE (AB//CD; C thuộc DE)

=>tứ giác ABEC là hình bình hành ( tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau)

mà góc BAC= 900 (tam giác ABC vuông tại A)

=.>hình bình hành ABEC là hình chữ nhật (tứ giác là hình bình hành có một góc vuông)

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốtBài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F. a, chứng minh AEMF là hình chữ nhật ,b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.C, biết AM 4cm. tính diện tích AEMFBài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của...
Đọc tiếp

mình cần gấp nhưng ai làm dk bài nào thì làm nha, có hình càng tốt

Bài 1: Tam giác ABC vuông cân taij A. M là trung điểm BC. Qua M kẻ các dường thảng song song với AC, AB Cát AB, AC tại E và F.

a, chứng minh AEMF là hình chữ nhật ,

b, O là trung điểm AM, D là trung Điểm MC. Chứng Minh OMDF là Hình Thoi.

C, biết AM 4cm. tính diện tích AEMF

Bài 2: Cho hình bình hành ABCD, có AB=2AD. Gọi E, F lần lượt là trung điểm của AB, CD

a, Cm AEFD là Hình thoi

b, AF cát DE tại M, BF cắt CE tại N. CM MENF là hình chữ nhật

c, Chứng minh MN, FE, AC, BD đồng quy

Bài 4: Hình chữ nhật ABCD, O là giao ddiemr 2 đường chéo. E đối xứng vs D qua C

a, Cm ABEC là hình bình hành

b, F là trung điểm BE. Tứ giác BDCF là hình gì? vì sao?

c, Cm tứ giác DOFE là Hình thang cân

d, hình chữ nhật ABCD cân để BOCF là hình vuông

2
24 tháng 12 2015

DÀI QUÁ LÀM XONG CHẮC VÀO BỆNH VIỆN

25 tháng 12 2015

câu 1

a) ta có MF // AB,BA vuông góc AC=> MF vuông góc AC=> MFA=90 độ

tương tự góc EAF=90 độ

tứ giác AEMF có góc EAF=MFA=AEM =90 độ=> tứ giác AEMF là hcn

b) tam giác ABC co AM la T tuyến ung voi canh huyền BC=> AM=1/2BC,MC=1/2BC=> AM=MC=> tam giác AMC cân tai M

=> MF là T tuyến => Flà tđ cua AC

xét tam giác MAC=> DF là đtb cua tam giác AMC => DF//AM=> DF//OM (1)

tương tự OF // MD (2) 

từ (1),(2) => T giác OMDF là hbh (3)

ta lai co OM=1/2AM,MD=1/2MC mà AM=MC => OM=DM (4)

từ (3),(4) => T giác OMDF la hình thoi

c) ta có tam giác ABC vuông can tai A=> góc BCA=45 độ

mà góc BCA= MAC=góc MAC =45 dộ=> tam giác MFA vuông can tai F

áp dung Pitago => AF=2 căn 2 cm, ma AF=FM=> AF=FM=2 căn 2 cm 

diện tích AEMF=AF.FM=2cAn 2.2can 2=8 cm vuông

20 tháng 12 2017

A B C D M N E H K F I O T S

e) Chứng minh HI, ST, KF đồng quy.

Gọi O là giao điểm của EI và HK.

Xét tứ giác HIKE ta có:

góc IHE = 900 (HI _|_ EB tại H)

góc IKE = 900 (KI _|_ EC tại K)

góc HEK = 900 (tứ giác ABEC là hình chữ nhật)

=> tứ giác HIKE là hình chữ nhật (tứ giác có 3 góc vuông)

=> góc HIK = 900

=> KI _|_ HI tại I

Xét hình chữ nhật HIKE ta có:

2 đường chéo EI và HK cắt nhau tại O (cách vẽ)

=> O là trung điểm của EI và O là trung điểm của HK

Xét tam giác FEI vuông tại F ta có:

FO là đường trung tuyến ứng với cạnh huyền EI (O là trung điểm của EI)

=> FO = 1/2 EI

Mà EI = HK (tứ giác HIKE là hình chữ nhật)

Nên FO = 1/2 Hk

Xét tam giác FHK ta có:

FO là đường trung tuyến (O là trung điểm của HK)

FO = 1/2 HK (cmt)

=> tam giác FHK vuông tại F

=> HF _|_ FK tại F

Xét tam giác SHK ta có:

ST là đường cao (ST _|_ HK tại T)

HI là đường cao (HI _|_ KI tại I)

KF là đường cao (KF _|_ HF tại F)

=> HI, ST, KF đồng quy tại một điểm (đpcm)

26 tháng 4 2018

làm dài v mà có 1 người nhận xét đúng làm làm j 

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE