Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tìm được 3 cạnh thì áp dụng công thức Hơ rong để tính .
https://olm.vn/hoi-dap/detail/96788252350.html
Tham khảo ở link này (mình gửi cho)
Hoc tốt!!!!!!!!!!!!
Bài 2 :
A B C D M E
a, Xét tam giác ABC ta có :
D là trung điểm AB
M là trung điểm CB
=)) DM là đường TB tam giác ABC
=)) DM // AC hay DM // AE (1)
Ta có : E là trung điểm AC
M là trung điểm BA
=)) EM là đường TB tam giác ABC
=)) EM // AB hay EM // AD (2)
Từ 1;2 =)) Tứ giác ADME là hình bình hành
b, Nếu tam giác ABC cân tại A => AM là đường trung tuyến AM
=)) AM đồng thời là tia phân giác của ^A
Xét hình bình hành ADME có 2 đường chéo AM là tia phân giác của ^A (cmt)
=)) Tứ giác ADME là hình thoi
c, Nếu tam giác ABC vuông tại A => ^A = 90^0
Xét hình bình hành ADME có ^A =90^0
=)) Tứ giác ADME là hình chữ nhật
2/
a/ hình thang ABCD có
AB // EF
==> AB // KF
xét tam giác ABC có
F là trung điểm của BC
AB // KF
==> KF là đường trung bình của tam giác ABC
==> K là trung điểm của AC
==> AK = KC
b/
E là trung điểm AD
F là trung điểm BC
==> EF là đường trung bình của hình thang ABCD
==> EF = (AB + CD) / 2 = (4 + 10) / 2 = 7(cm)
KF là đường trung bình của tam giác ABC nên
KF = AB / 2 = 4 / 2 = 2(cm)
==> EK = EF - KF = 7 - 2 = 5(cm)
vậy EK = 5(cm), KF = 2 (cm)
3/
a/ ta có
D là trung điểm của AB
M là trung điểm của BC
==> DM là đường trung bình của tam giác ABC
==> Dm // AC
==> DM // AE ( E thuộc AC, DM // AC)
chứng minh tương tự ta có
ME là đường trung bình của tam giác ABC
==> AD // ME
tứ giác ADME có DM // AE, AD // ME nên là HBH
b/ ( nếu tam giác ABC cân tại A)
tam giác ABC cân tại A ==> AB = AC
AD = 1/2 AB (D là trung điểm của AB)
AE = 1/2 AC (E là trung điểm của AC)
==> AD = AE
c/ (nếu tam giác ABC vuông)
ta có
tứ giác ADME là HBH
góc A = 90 độ
==> tứ giác ADME là HCN
d/ ta có
AB^2 + AC^2 = BC^2
6^2 + 8^2 = 100
==> BC = 10(cm)
AM là đường trung tuyến của tam giác ABC
==> AM = 1/2 BC = 1/2 . 10 = 5(cm)
vậy AM = 5cm
Bài 2:Cho mk ý kiến,sai đề à???4cm=6cm nhé
Bài 3:
Bài 4:
Nối D với E, nối D với M:
Chứng minh được ED//FB (BEDF là hình thoi) (1)
BF là đường trung bình tam giác AMD
=> MD//FB (tc) (2)
(1),(2) => MD trùng với ED (định lý) ( Qua 1 điểm ko thuộc đường thẳng a có 1 và chỉ 1 đường thẳng đi qua điểm đó và song song với đường thẳng a )
từ đó bạn có thể cm BMCD là hình chữ nhật ( nếu cần )
( xét từ1 giác BDCM có BC cắt DM tại trung điểm của mỗi đoạn ->BMCD là Hình chữ nhật)
Bài 5:
A B C D M N P 1 2 K H 2 H 1
a) Ta có DM song song và bằng BN nên BMDN là hình bình hành (vì có 2 cạnh đối song song và bằng nhau)
b) Tam giác CDN bằng tam giác DAP (cạnh - góc - cạnh)
=> Góc D1 = góc A1
Ta lại có Góc D2 + Góc D1 = Góc D = 90 độ
=> Góc D2 + Góc A1 = 90 đo
Trong tam giác KAD có tổng 2 góc A và D bằng 90 độ nên góc K bằng 90 độ
=> AP vuông góc với DN
c) Tương tự câu b ta có BM vuông góc với AP
=> BM // DN (vì cùng vuông góc vời AP)
=> BMKN là hình thang.
Theo câu b tam giác KAD vuông tại K có KM là trung tuyến ứng với cạnh huyền => KM = 1/2 AD
=> KM = BN
=> BMKN là hình thang cân
d) \(DP=\frac{1}{2}\sqrt{5},AP=\sqrt{5-\frac{1}{4}5}=\frac{\sqrt{15}}{2}\)
\(DP^2=PK.PA\)
=> \(PK=\frac{DP^2}{PA}=\frac{\frac{5}{4}}{\frac{\sqrt{15}}{2}}=\frac{\sqrt{15}}{6}\)
=> \(\frac{PK}{PA}=\frac{\frac{\sqrt{15}}{6}}{\frac{\sqrt{15}}{2}}=\frac{1}{3}\)
=> Đường cao hạ từ K xuống DC bằng 1/3 đường cao hạ từ A xuống DC
=> Đường cao hạ từ K xuống DC = \(\frac{1}{3}\sqrt{5}\)
=> Đường cao hạ từ K xuống MN bằng \(\frac{1}{2}\sqrt{5}-\frac{1}{3}\sqrt{5}=\frac{\sqrt{5}}{6}\)
=> Diện tích KMN bằng \(\frac{1}{2}.MN.KH_2=\frac{1}{2}\sqrt{5}\frac{\sqrt{5}}{6}=\frac{5}{12}\)