Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là HBH => AB = CD
tg BEFD có : BE = DF ( cùng = 1/2 hai cạnh Ab và CD )
BE // DF ( AB // CD)
=> BEFD là HBH
b, TG AEFD có AE = DF ( cùng bằng 1/2 hai cạnh bằng nhau )
AE // BF ( AB // CD)
=> EFD là HBH
a) DEBF là hình bình hành vì EB=DF và // với nhau
b) do 2 tam giác CAB và ACD bằng nhau
có AC (chung) . 2 đường chéo AC và BD nên O là trung điểm của AC
E, F là trung đểm của AB và CD nên 3 điểm FOF thẳng hàng
ta lại có OE và OF là đường trubg bình của 2 tam giác bằng nhau như ở trên
=> OE=OF => đối xứng qua O
c) do DEvaf BF // nên EM // FN
ta lại có 2 tam giác AME= FNC vì các góc A=C; E=F (do các cặp góc so le bằng nhau)
=> EM=FN => EM // FN
vaayjEMFN là hình bình hành
A B C D P Q H K
Xét tứ giác ABQD có AB // DQ và AB = DQ => ABDQ là hình bình hành
Hình bình hành ABQD có 1 góc vuông => ABDQ là hình chữ nhật
Hình chữ nhật ABQD có AB = AD nên là hình vuông
=> Góc DPQ = 45*
Tương tự, ta có PBCQ là hình vuông => góc CPQ = 45*
=> góc DPC = 1v (1)
Các tam giác vuông cân PAQ, QPD, PBQ, QPC bằng nhau => PH = QH = PK = QK
=> PHQK là hình thoi (2)
Từ (1) và (2) => PHQK là hình vuông