K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.

Tam giác AEM vuông tại A có \(AB\perp EM\)

Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)

\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)

Áp dụng đl pytago vào tam giác vuông AEM:

\(AE^2+AM^2=ME^2\)

Thay vào (1) ta có:

\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)

Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

11 tháng 6 2018

bạn tự hình nha

đẳng thức cần chứng minh tương đương

\(1=\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}\left(@\right)\)

vậy để c/m bài toán ta cần c/m (@) ta có

\(\dfrac{AB}{AM}=\dfrac{CN}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AM^2}=\dfrac{CN^2}{MN^2}\left(1\right)\)

và AB=AD nên

\(\dfrac{AB}{AN}=\dfrac{AD}{AN}=\dfrac{CM}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AN^2}=\dfrac{CM^2}{MN^2}\left(2\right)\)

áp dụng định lí pythagore cho tam giác MCN vg tại C

\(CM^2+CN^2=MN^2\)

cộng 2 vế của (1) và (2) ta có

\(\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}=\dfrac{CN^2}{MN^2}+\dfrac{CM^2}{MN^2}=\dfrac{CM^2+CN^2}{MN^2}=\dfrac{MN^2}{MN^2}=1\left(\left(@\right)lđ\right)\)

vậy bài toán đc c/m

nếu có j thắc mắc ib mình giải thích cho

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)

21 tháng 8 2019

a) + ΔABM = ΔADN ( g.c.g )

=> AM = AN

b) + ΔANI vuông tại A, đg cao AD

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AN^2}+\frac{1}{AI^2}\) ( theo hệ thức lượng trog Δ vuông )

\(\Rightarrow\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AI^2}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Lời giải:
a)

Xét tam giác $AND$ và $AMB$ có:

\(\widehat{ADN}=\widehat{ABM}=90^0\)

\(\widehat{DAN}=\widehat{BAM}(=90^0-\widehat{DAM})\)

\(\Rightarrow \triangle AND\sim \triangle AMB(g.g)\Rightarrow \frac{AN}{AM}=\frac{AD}{AB}=1\) (do $ABCD$ là hình vuông nên $AB=AD$)

\(\Rightarrow AM=AN\) (đpcm)

b)

Ta thấy $MC\parallel AD$ nên áp dụng định lý Ta-let:

\(\frac{AM}{AI}=\frac{CD}{DI}\Rightarrow AM=\frac{AI.CD}{DI}\)

Từ đây kết hợp với điều kiện $AB=AD=CD$ và định lý Pitago ta có:

\(\Rightarrow \frac{1}{AM^2}+\frac{1}{AI^2}=\frac{DI^2}{AI^2.CD^2}+\frac{1}{AI^2}=\frac{DI^2+CD^2}{AI^2.CD^2}=\frac{DI^2+AD^2}{AI^2.AB^2}=\frac{AI^2}{AI^2.AB^2}=\frac{1}{AB^2}\) (đpcm)

19 tháng 12 2016

ke them

20 tháng 3 2021

Vì ABCD là hình vuông (giả thiết).

\(\Rightarrow AB=BC=CD=DA\)(tính chất)

Và \(AB//CD\)(tính chất)  \(\Rightarrow AB//DF\).

Và \(AD//CE\)(tính chất) \(\Rightarrow CE//AD\)

\(AB//DF\)(chứng minh trên)

\(\frac{AB}{AE}=\frac{FC}{FE}\)(hệ quả của định lí Ta-lét)

\(\Rightarrow\frac{AD}{AE}=\frac{FC}{FE}\)(vì \(AB=AD\))

\(\Rightarrow\frac{AD^2}{AE^2}=\frac{FC^2}{FE^2}\left(1\right)\)

Vì \(AB//CF\)(giả thiết)

\(\Rightarrow\frac{BE}{CE}=\frac{AE}{FE}\)(hệ quả của định lí Ta-lét) (2)

\(\Rightarrow\frac{BE}{CE+BE}=\frac{AE}{FE+AE}\)(tính chất của tỉ lệ thức)

\(\Rightarrow\frac{BE}{BC}=\frac{AE}{AF}\)\(\Rightarrow\frac{BE}{AD}=\frac{AE}{AF}\)(vì \(AD=BC\))

\(\Rightarrow\frac{AD}{AF}=\frac{BE}{AE}\)(tính chất của tỉ lệ thức)

Từ (2) \(\Rightarrow\frac{BE}{AE}=\frac{CE}{FE}\)(tính chất của tỉ lệ thức)

Do đó \(\frac{AD}{AF}=\frac{CE}{FE}\Rightarrow\frac{AD^2}{AF^2}=\frac{CE^2}{FE^2}\left(3\right)\)

Từ (1) và (3)

\(\Rightarrow\frac{AD^2}{AE^2}+\frac{AD^2}{AF^2}=\frac{FC^2}{FE^2}+\frac{CE^2}{FE^2}\)

\(\Rightarrow AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FC^2+CE^2}{FE^2}\)

Vì ABCD là hình vuông (giả thiết)

\(\Rightarrow BC\perp CD\)(tính chất)\(\Rightarrow EC\perp DF\)

Do đó \(\Delta CEF\)vuông tại C.

\(\Rightarrow CE^2+CF^2=EF^2\)(định lí Py-ta-go)

Do đó: \(AD^2\left(\frac{1}{AE^2}+\frac{1}{AF^2}\right)=\frac{FE^2}{FE^2}=1\)

\(\Rightarrow\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AD^2}\)(điều phải chứng minh).

20 tháng 3 2021

A B D C E F