Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [D, A] Đoạn thẳng j: Đoạn thẳng [D, B] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [C, N] Đoạn thẳng r: Đoạn thẳng [O, M] Đoạn thẳng q: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [E, M] Đoạn thẳng t: Đoạn thẳng [B, N] Đoạn thẳng b: Đoạn thẳng [C, H] Đoạn thẳng f_1: Đoạn thẳng [H, M] A = (-2.56, 2.02) A = (-2.56, 2.02) A = (-2.56, 2.02) B = (1.54, 1.98) B = (1.54, 1.98) B = (1.54, 1.98) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t
a) Xét tam giác OEB và tam giác OMC có:
OB = OC (Vì ABCD là hình vuông)
EB = MC (gt)
\(\widehat{OCM}=\widehat{OBE}\left(=45^o\right)\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)
Ta có \(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)
Vậy tam giác OEM vuông cân.
b) Ta luôn có \(\Delta CMN\sim\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)
Lại có \(CM=BE\), mà AB = BC nên AE = MB
Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)
Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\) , áp dụng định lý Ta-let đảo, ta có EM // BN.
c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)
Suy ra \(\Delta OMC\sim\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)
Xét tam giác OMB và tam giác CMH' có :
\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)
Góc \(\widehat{OMB}=\widehat{CMH'}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta OMB\sim\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)
Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^o+45^o=90^o\)
Hay \(CH'\perp BN\)
Vậy H trùng H' hay O, M , H thẳng hàng.
a.
Xét hai tam giác vuông ABE và ADH:
\(AD=AB\)
\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))
\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)
\(\Rightarrow AH=AE\)
\(\Rightarrow\Delta AHE\) vuông cân tại A
b. Cũng từ (1) ta có \(BE=DH\)
Xét hai tam giác vuông ABE và FDA có:
\(\widehat{BAE}=\widehat{AFD}\) (so le trong)
\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)
c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)
\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)
\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)
Bạn tham khảo lời giải ở đường link sau nhé:
Câu hỏi của Thới Nguyễn Phiên - Toán lớp 8 - Học toán với OnlineMath