Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a) CMR: DE vuông góc với CF; EF=CM.
b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.
c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất
ai tích mình tích lại
A B C D H M
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
a) xet tg DEA va tg DFC ta co;
A=D=90 ; AD=DC; AE=MF=DF ( vi tg DFM vuong can)
vay 2 tg = nhau => DE=CF
b) h di em lam
c)diem M se nam o giao diem 2 dg cheo khi do AEMF la hinh vuong se co Smax
( em hoc lop 6 ma chang nat oc j )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo tại đâu thế ạ sao em ko thấy j
Gọi I là giao điểm của DE và CF
MFA = FAE = AEM = 900
=> AEMF là hình chữ nhật
BD là tia phân giác của hình vuông ABCD
=> EBM = 450
mà tam giác EBM vuông tại E
=> Tam giác EBM vuông cân tại E
=> EB = EM
mà EM = AF (AEMF là hình chữ nhật)
=> FA = EB
mà AD = AB (ABCD là hình chữ nhật)
=> AB - EB = AD - FA
=> AE = FD
Xét tam giác EAD và tam giác FDC có:
EA = FD (chứng minh trên)
EAD = FDC (= 900)
AD = DC (ABCD là hình chữ nhật)
=> Tam giác EAD = Tam giác FDC (c.g.c)
=> ADE = DCF (2 góc tương ứng)
mà AED = CDE (2 góc so le trong, AB // CD)
=> ADE + AED = DCF + CDE
mà ADE + AED = 900 (tam giác AED vuông tại A)
=> DCF + CDE = 900
=> Tam giác IDC vuông tại I
=> DE _I_ CF
ôi trời ơi, vừa nói lúc chiều là về tạo tk luôn, chứng tỏ dân chơi thời nay là có thật
a. Dễ thấy \(AEMF\)là hình chữ nhật \(\Rightarrow\) \(AE=FM\)
Dễ thấy \(\Delta DFM\) vuông cân tại F \(\Rightarrow FM=DF\)
\(\Rightarrow AE=DF\) \(\Rightarrow\)tam giác vuông ADE bằng tam giác vuông DCF ( \(AE=DF;AD=DC\) \(\Rightarrow\) \(DE=CF\)
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.