K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

                                                                       BẠN TỰ VẼ HÌNH NHA

                                                                                       Giải 

                                    Gọi cạnh tam giác đều ABC la a, chiều cao là h.Ta có:

   a)                      Ta có Stam giác BMC+Stam giác CMA+Stam giác AMB =S​tam giác ABC                    

                   <=>(1/2)ax+(1/2)ay+(1/2)az=(1/2)ah  <=> (1/2)a.(x+y+z)=(1/2)ah      

              <=>x+y+z=h không phụ thuộc vào vị trí của điểm M

   b)                    x2+y2\(\ge\)2xy ; y2+z2\(\ge\)2yz ;  z2+x2\(\ge\)2zx

             =>2.(x2+y2+z2)  \(\ge\)2xy+2xz+2yz

             =>3.(x2+y2+z2)   \(\ge\)x2+y2+z2+2xy+2xz+2yz

            =>x2+y2+z2     \(\ge\)(x+y+z)2/3=h2/3  không đổi

                     Dấu "=" xảy ra khi x=y=z

           Vậy để x2 + y2 + z2 đạt giá trị nhỏ nhất thì M là giao điểm của 3 đường phân giác của tam giác ABC hay M là tâm của tam giác ABC

20 tháng 7 2017

\(a.\)Ta có:    \(S_{\Delta BMC}=\frac{BC.x}{2}\)\(\Rightarrow\)\(x=\frac{2.S_{\Delta MBC}}{BC}\)
                      \(S_{\Delta BMA}=\frac{BA.z}{2}\)\(\Rightarrow\)\(z=\frac{2.S_{\Delta BMA}}{AB}\)
                      \(S_{\Delta AMC}=\frac{AC.y}{2}\)\(\Rightarrow\)\(y=\frac{2.S_{\Delta AMC}}{AC}\)
   mà \(\Delta ABC\) đều nên AB = BC = CA
suy ra \(x+y+z=\frac{2\left(S_{\Delta AMC}+S_{\Delta BMA}+S_{\Delta BMC}\right)}{AB}\)
suy ra đpcm

2 tháng 1 2020

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

2 tháng 3 2020

Câu c có khá nhiều cách giải,nhưng mình trình bày 1 cách thôi nhá :)

2 tháng 3 2020

Câu c là lấy H đối xừng với B qua M,Kẻ đường thẳng song song với AE vắt EM,AF lần lượt tại V và W ạ

6 tháng 3 2019

dạ xin lỗi ạ Tam giác ABC đều ạ 

15 tháng 6 2016

M=cuc cut

15 tháng 6 2016

M=cuc cut

15 tháng 3 2016

Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.

a) CMR: DE vuông góc với CF; EF=CM.

b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.

c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất

ai tích mình tích lại