Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Chứng minh EA.EB = ED.EC
- Chứng minh Δ EBD đồng dạng với Δ ECA (gg)
- Từ đó suy ra EB/EC = ED/EA → EA.EB = ED.EC
* Chứng minh góc EAD = góc ECB
- Chứng minh Δ EAD đồng dạng với Δ ECB (cgc)
- Suy ra góc EAD = góc ECB
b) - Từ góc BMC = 120o → góc AMB = 60o → góc ABM = 30o
- Xét Δ EDB vuông tại D có góc B = 30o
→ ED = 1/2 EB
- Lý luận cho SEAD/SECB = (ED/EB)2 từ đó SECB = 144 cm2
c) - Chứng minh BMI đồng dạng với Δ BCD (gg)
- Chứng minh CM.CA = CI.BC
- Chứng minh BM.BD + CM.CA = BC2 có giá trị không đổi
Cách 2: Có thể biến đổi BM.BD + CM.CA = AB2 + AC2 = BC2
d) - Chứng minh Δ BHD đồng dạng với Δ DHC (gg)
→ BH/DH = BD/DC → 2BP/2DQ = BD/DC → BP/DQ = BD/DC
- Chứng minh Δ DPB đồng dạng với Δ CQD (cgc)
→ góc BDP = góc DCQ mà góc BDP + góc PDC = 900 → CQ ⊥ P
A B C D O C' A' B' D' d
Đặt độ dài mối cạnh của hình vuông là a (a\(\in\)R+)
Ta thấy:\(\Delta\)AA'O vuông tại A' => ^A'AO + A'OA = 900
Mà ^A'OA + ^B'OB = 900 nên ^A'AO = ^B'OB
Xét \(\Delta\)AA'O và \(\Delta\)OB'B: ^AA'O = ^OB'B = 900; AO=BO; ^A'AO = ^B'OB
=> \(\Delta\)AA'O = \(\Delta\)OB'B (Cạnh huyền góc nhọn) => AA'=OB'
Xét \(\Delta\)BB'O: ^BB'O=900 => OB' 2 + BB' 2 = OB2
Do AA' = OB' => AA' 2 + BB' 2 = OB2 (1)
Tương tự, ta có: CC' 2 + DD' 2 = OC2 (2)
Cộng (1) với (2) => AA' 2 + BB' 2 + CC' 2 + DD' 2 = OB2 +OC2 = a2 (Vì \(\Delta\)BOC vuông cân đỉnh O)
Mà a không đổi nên ta có điều phải chứng minh.