K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

a) Xét hai tam giác AHB và AHC ta có

AB = AC (gt)

\(\widehat{B}=\widehat{C}\)(gt)

BH = HC (gt)

Do đó: \(\Delta AHB=\Delta AHC\)(c-g-c)

b) Ta có: \(\Delta AHB=\Delta AHC\)(câu a)

=> \(\widehat{AHB}=\widehat{AHC}\)(cặp góc tương ứng)

Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

c) Ta có BH = HC (gt)

Mà BH + HC = BC

hay BH + HC = 10 (cm)

=> BH = HC = 5 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông ABH có

\(AB^2-BH^2=AH^2\)

\(13^2-5^2=AH^2\)

\(12^2=AH^2\)

=> AH = 12

P/s: k hộ thần =))))

A B C H 20 12 5

a, Áp dụng định lí Pytago trong tam giác \(AHB\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HB^2=AB^2\)

\(AB^2=12^2+5^2=144+25=169\)

\(AB=\sqrt{169}=13cm\)

Áp dụng định lí Pytago trong tam giác \(AHC\)có \(\widehat{H}=90^0\)ta có :

\(HA^2+HC^2=AC^2\)

\(HC^2=AC^2-HA^2\)

\(HC^2=20^2-12^2\)

\(HC^2=400-144=256\)

\(HC=\sqrt{256}=16cm\)

\(H\in BC\)

\(\Rightarrow HB+HC=BC\)

hay \(BC=5+16=21cm\)

b, Chu vi tam giác ABC = \(20+21+13=54cm\)

19 tháng 3 2022

a, Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=13cm\)

Theo định lí Pytago tam giác ẠHC vuông tại H

\(HC=\sqrt{AC^2-AH^2}=16cm\)

-> BC = HB + HC = 5 + 16 = 21 cm 

b, Chu vi tam giác ABC là \(P_{ABC}=AC+AB+BC=21+13+20=54cm\)

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

30 tháng 10 2019