Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Diện tích xung quanh hình trụ là:
$2\pi rh=90\Rightarrow \pi rh=45$ (cm2)
Thể tích hình trụ là:
$\pi r^2h=r.\pi rh=3.45=135$ (cm3)
a: Chu vi đường tròn đáy là 192/24=8cm
R=8:2:3,14=1,27(cm)
b:V=24*1,27^2*3,14=121,55(cm3)
\(S_{xq}=140\pi\Leftrightarrow2\pi rh=140\pi\Leftrightarrow h=\dfrac{70}{r}\left(1\right)\)
\(S_{tp}=360\pi\Leftrightarrow2\pi r\left(r+h\right)=360\pi\Leftrightarrow r\left(r+h\right)=180\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow r\left(r+\dfrac{70}{r}\right)=180\\ \Leftrightarrow r^2+70=180\Rightarrow r=\sqrt{110}\)
Tổng diện tích 2 đáy là:
\(360\pi-140\pi=220\pi\left(cm^2\right)\)
Bán kính đáy hình trụ là:
\(\sqrt{\dfrac{220\pi}{2\pi}}=\sqrt{110}\) (cm2)
Diện tích toàn phần gấp đôi diện tích xung quanh nên:
2πRh + 2π R 2 = 2.2π R 2 => 2πRh = 2π R 2 => R = h
Vậy chiều cao của hình trụ là 3cm
1:
V=pi*r^2*h
=>r^2*15*pi=375pi
=>r^2=25
=>r=5
Sxq=2*pi*r*h=2*5*15*pi=150pi
\(Sxq=2\pi Rh=>h=\dfrac{Sxq}{2\pi R}=\dfrac{352}{2.3,14.7}\approx8cm\)
Sxq= 2 \(\pi.r.h\)
\(\Leftrightarrow352\simeq2\cdot3,14\cdot7\cdot h\)
\(\Rightarrow\) h = \(8\left(cm\right)\)
Đường cao: 3 x 2 = 6(cm)
a, Diện tích xung quanh hình trụ:
\(S_{xq}=2\pi rh=2.\pi.3.6=36\pi\left(cm^2\right)\)
b, Diện tích toàn phần hình trụ:
\(S_{tp}=2.S_{đáy}+S_{xq}=2.\pi r^2+36\pi=2\pi.3^2+36\pi=54\pi\left(cm^2\right)\)
c, Thể tích hình trụ:
\(V=\pi r^2.h=\pi.3^2.6=54\pi\left(cm^3\right)\)
Diện tích xung quanh hình trụ bằng 314 c m 2
⇔ 2.π.r.h = 314
Mà r = h
⇒ 2 π r 2 = 31 ⇒ r 2 ≈ 50
⇒ r ≈ 7,07 (cm)
Thể tích hình trụ: V = π ⋅ r 2 h = π ⋅ r 3 ≈ 1109 , 65 cm 3
Kiến thức áp dụng
Hình trụ có bán kính đáy r, chiều cao h thì:
+ Diện tích xung quanh: Sxq = 2πrh
+ Thể tích: V = π.r2.h
Diện tích xung quanh hình trụ bằng 314cm2
⇔ 2.π.r.h = 314
Mà r = h
⇒ 2πr2 = 314
⇒ r2 ≈ 50
⇒ r ≈ 7,07 (cm)
Thể tích hình trụ: V = π.r2.h = π.r3 ≈ 1109,65 (cm3).
Ta có : \(S_{xq}=2\pi Rh=90\)
\(\Rightarrow h=\dfrac{90}{2\pi R}=\dfrac{15}{2\pi}\left(cm\right)\)
\(\Rightarrow V=\pi R^2h=\pi.3^2.\dfrac{15}{2\pi}=\dfrac{135}{2}\left(cm^3\right)\)
Vậy ...
sao h lại bằng 15 trên 2pi