Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm F có lẽ hơi thừa đấy.
Bạn c/m K là trực tâm của tam giác AEC \(\Rightarrow AK\perp EC\Rightarrow AI\perp EC\Rightarrow\widehat{AIC}=90^0\)
Gọi O là giao điểm của AC và BD thì O là trung điểm của AC và BD và AC = BD
Tam giác AIC vuông tại I có IO là trung tuyến ứng với cạnh huyền AC
\(\Rightarrow IO=\frac{1}{2}AC\Rightarrow IO=\frac{1}{2}BD\)
Tam giác BID có IO là trung tuyến và \(IO=\frac{1}{2}BD\Rightarrow\Delta BID\)vuông tại I
\(\Rightarrow S_{BID}=\frac{1}{2}.BI.ID\)(1)
Chứng minh được BDEC là hình bình hành nên \(BD//CE\)
Mà \(AI\perp CE\left(cmt\right)\Rightarrow IM\perp BD\)
Tam giác BID có đường cao IM \(\Rightarrow S_{BID}=\frac{1}{2}IM.BD\) (2)
Từ (1) và (2) có: \(IM.BD=DI.BI\)
D E A B C M F K S O Q
a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.
b/ Dễ thấy.
c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE => AECM là hình thang
d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành
e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)
Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM
=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)
Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ
=> góc AFB + góc DFB = góc AFD = 90 độ
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K