K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

tam giácABC : MN là đường trung bình => MN// AC ,tam giác ADC  có DP là đường trung bình => QP//AC                                                                          ==> MN//QP(1)                                                                                                                                                                                     Xét r=tam giác BCD có NP là đường trung binh=> NP//BD=> GÓC MNP=90 ĐỘ(2)                                                                                           từ 1 và 2 => MNPQ là hình chữ nhật                                                                                                                                  b) MNPQ/ABCD=1/2                                                                                                                                                                                 C) diện tích ABCD=9.6/2=27 , diện tích MNPQ=27/2=13.5 diện tích MNB=3.375

28 tháng 11 2019

76276712

22 tháng 2 2018

A M B D Q N C P

a) \(\Delta ABC\)có : 

MA = MB ( gt )

NB = NC ( gt )

=> MN là đường trung bình của \(\Delta ABC\)

=> \(MN//AC\)\(;\)\(MN=\frac{1}{2}AC\)

CMTT : \(PQ//AC\)\(;\)\(PQ=\frac{1}{2}AC\)

=> MN // PQ ; MN = PQ .

=> Tứ giác MNPQ là hình bình hành .

b) Theo câu a) , Ta có : 

MQ // BD và \(MQ=\frac{1}{2}BD\) ; NP // BD và \(NP=\frac{1}{2}BD\)

+) Hình bình hành MNPQ là hình thoi 

=> MN = MQ <=> AC = BD ( Vì \(MN=\frac{1}{2}AC\)\(MQ=\frac{1}{2}BD\)

=> ABCD là hình thang cân .

+) Hình bình hành MNPQ là hình chữ nhật 

\(\Rightarrow\) \(\widehat{NMQ}=90^0\)\(\Leftrightarrow\)\(MN\perp MQ\)\(\Leftrightarrow\)\(AC\perp BD\)( Vì MN // AC ; MQ // BD ) 

=> Hình thang thang ABCD có 2 đường chéo vuông góc với nhau .

+) Hình bình hành MNPQ là hình vuông 

\(\Rightarrow\)\(MN=MQ\)\(;\)\(\widehat{NMQ}=90^0\) \(\Leftrightarrow\)\(AC=BC\)và \(AC\perp BD\)

=> ABCD là hình thang cân có 2 đường chéo vuông góc với nhau .