K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNQ và ΔNQP có

\(\widehat{NMQ}=\widehat{QNP}\)

\(\widehat{MNQ}=\widehat{NQP}\)

Do đo: ΔMNQ\(\sim\)ΔNQP

b: Ta có: ΔMNQ\(\sim\)ΔNQP

nên NQ/QP=MN/NQ

hay \(NQ^2=MN\cdot PQ=9\cdot16=144\left(cm\right)\)

=>NQ=12(cm)

a) Xét ΔMNH vuông tại H và ΔNQP vuông tại P có 

\(\widehat{MNH}=\widehat{NQP}\)(hai góc so le trong, MN//QP)

Do đó: ΔMNH\(\sim\)ΔNQP(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNQ vuông tại M có MH là đường cao ứng với cạnh huyền NQ, ta được:

\(NH\cdot NQ=MN^2\)

Bài 1:Cho tam giác ABC vuông tại A có AC=12cm,BC=16cm.Trên cạnh BC lấy điểm H sao cho CH=9cm.Tia phân giác của góc ACH cắt AH tại M, tia phân giác góc BAH cắt BC tại N.Chứng minh a)\(\Delta CAB\sim\Delta CHA,AH\perp BC\) b)\(\dfrac{NH}{NB}=\dfrac{CH}{CA}\) , từ đó tính NH,NB? c) MN//AB d)MB cắt AN tại O,cắt đường thẳng qua N và song song với AH tại I.Chứng minh \(\dfrac{1}{MO}=\dfrac{1}{MI}+\dfrac{1}{MB}\) Bài 2: Cho hình chữ...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AC=12cm,BC=16cm.Trên cạnh BC lấy điểm H sao cho CH=9cm.Tia phân giác của góc ACH cắt AH tại M, tia phân giác góc BAH cắt BC tại N.Chứng minh

a)\(\Delta CAB\sim\Delta CHA,AH\perp BC\)

b)\(\dfrac{NH}{NB}=\dfrac{CH}{CA}\) , từ đó tính NH,NB?

c) MN//AB

d)MB cắt AN tại O,cắt đường thẳng qua N và song song với AH tại I.Chứng minh \(\dfrac{1}{MO}=\dfrac{1}{MI}+\dfrac{1}{MB}\)

Bài 2: Cho hình chữ nhật ABCD có AD<AB và \(AH\perp BD\).

a)Chứng minh \(\Delta AHB\sim\Delta ADC\)

b)Lấy \(M\in BH\)\(N\in DC\) sao cho \(\dfrac{BM}{BH}=\dfrac{CN}{CD}\) .Chứng minh \(\Delta ABM\sim\Delta ACN\)

c) Chứng minh \(AM\perp MN\)

Bài 3:

Cho hình thang MNPQ (MN//PQ) , góc QMN=góc QNP. MP cắt QN tại O.

a. CMR: \(\Delta MNQ\sim\Delta NQP\)

b. Biết MN=9, PQ=16.Tính NQ,NO,OQ và tỉ số diện tích của \(\Delta MNQ\)\(\Delta NQP\)

c. Tia phân giác góc MNQ cắt MQ tại A, tia phân giác góc NQP cắt NP tại P. CMR: AM.BP=AQ.BN=AQ.AQ

d.CMR:AB//MN

1

a: Xét ΔCAB và ΔCHA có

CA/CH=CB/CA

góc C chung

Do đó: ΔCAB đồng dạng với ΔCHA

SUy ra: góc CHA=90 độ

hay AH vuông góc với BC

b: Xét ΔHAB có AH là phân giác

nên NH/NB=HA/AB(1)

Xét ΔCAH có CM là phân giác

nên HM/MA=HC/AC(2)

Từ (1) và (2) suy ra NH/NB=HM/MA=CH/CA

c: Xét ΔHAB có HM/MA=HN/NB

nên MN//AB

20 tháng 5 2017
  1. a)xét tg MOQ và tg NOP có: -góc Ở chung; OM=ON(giả thiết);OQ=OP(giả thiết)=>tg MOQ=tgNOP(cạnh.góc cạnh)
  2. b) ta có:QP (cạnh chung);MQ=NP(giả thiết);góc M=góc N(tg MOQ=tgNOP)=>tg MPQ=tg NQP
20 tháng 5 2017
  1. c) MN//PQ( vị trí so le trong)

d) vì MN//PQ(cmt)=>MNPQ là ht cân